123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113 |
- # copyright (c) 2022 PaddlePaddle Authors. All Rights Reserve.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- """
- This code is refer from:
- https://github.com/open-mmlab/mmocr/blob/main/mmocr/models/textdet/modules/gcn.py
- """
- from __future__ import absolute_import
- from __future__ import division
- from __future__ import print_function
- import paddle
- import paddle.nn as nn
- import paddle.nn.functional as F
- class BatchNorm1D(nn.BatchNorm1D):
- def __init__(self,
- num_features,
- eps=1e-05,
- momentum=0.1,
- affine=True,
- track_running_stats=True):
- momentum = 1 - momentum
- weight_attr = None
- bias_attr = None
- if not affine:
- weight_attr = paddle.ParamAttr(learning_rate=0.0)
- bias_attr = paddle.ParamAttr(learning_rate=0.0)
- super().__init__(
- num_features,
- momentum=momentum,
- epsilon=eps,
- weight_attr=weight_attr,
- bias_attr=bias_attr,
- use_global_stats=track_running_stats)
- class MeanAggregator(nn.Layer):
- def forward(self, features, A):
- x = paddle.bmm(A, features)
- return x
- class GraphConv(nn.Layer):
- def __init__(self, in_dim, out_dim):
- super().__init__()
- self.in_dim = in_dim
- self.out_dim = out_dim
- self.weight = self.create_parameter(
- [in_dim * 2, out_dim],
- default_initializer=nn.initializer.XavierUniform())
- self.bias = self.create_parameter(
- [out_dim],
- is_bias=True,
- default_initializer=nn.initializer.Assign([0] * out_dim))
- self.aggregator = MeanAggregator()
- def forward(self, features, A):
- b, n, d = features.shape
- assert d == self.in_dim
- agg_feats = self.aggregator(features, A)
- cat_feats = paddle.concat([features, agg_feats], axis=2)
- out = paddle.einsum('bnd,df->bnf', cat_feats, self.weight)
- out = F.relu(out + self.bias)
- return out
- class GCN(nn.Layer):
- def __init__(self, feat_len):
- super(GCN, self).__init__()
- self.bn0 = BatchNorm1D(feat_len, affine=False)
- self.conv1 = GraphConv(feat_len, 512)
- self.conv2 = GraphConv(512, 256)
- self.conv3 = GraphConv(256, 128)
- self.conv4 = GraphConv(128, 64)
- self.classifier = nn.Sequential(
- nn.Linear(64, 32), nn.PReLU(32), nn.Linear(32, 2))
- def forward(self, x, A, knn_inds):
- num_local_graphs, num_max_nodes, feat_len = x.shape
- x = x.reshape([-1, feat_len])
- x = self.bn0(x)
- x = x.reshape([num_local_graphs, num_max_nodes, feat_len])
- x = self.conv1(x, A)
- x = self.conv2(x, A)
- x = self.conv3(x, A)
- x = self.conv4(x, A)
- k = knn_inds.shape[-1]
- mid_feat_len = x.shape[-1]
- edge_feat = paddle.zeros([num_local_graphs, k, mid_feat_len])
- for graph_ind in range(num_local_graphs):
- edge_feat[graph_ind, :, :] = x[graph_ind][paddle.to_tensor(knn_inds[
- graph_ind])]
- edge_feat = edge_feat.reshape([-1, mid_feat_len])
- pred = self.classifier(edge_feat)
- return pred
|