# copyright (c) 2022 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ This code is refer from: https://github.com/open-mmlab/mmocr/blob/main/mmocr/models/textdet/modules/gcn.py """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import paddle import paddle.nn as nn import paddle.nn.functional as F class BatchNorm1D(nn.BatchNorm1D): def __init__(self, num_features, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True): momentum = 1 - momentum weight_attr = None bias_attr = None if not affine: weight_attr = paddle.ParamAttr(learning_rate=0.0) bias_attr = paddle.ParamAttr(learning_rate=0.0) super().__init__( num_features, momentum=momentum, epsilon=eps, weight_attr=weight_attr, bias_attr=bias_attr, use_global_stats=track_running_stats) class MeanAggregator(nn.Layer): def forward(self, features, A): x = paddle.bmm(A, features) return x class GraphConv(nn.Layer): def __init__(self, in_dim, out_dim): super().__init__() self.in_dim = in_dim self.out_dim = out_dim self.weight = self.create_parameter( [in_dim * 2, out_dim], default_initializer=nn.initializer.XavierUniform()) self.bias = self.create_parameter( [out_dim], is_bias=True, default_initializer=nn.initializer.Assign([0] * out_dim)) self.aggregator = MeanAggregator() def forward(self, features, A): b, n, d = features.shape assert d == self.in_dim agg_feats = self.aggregator(features, A) cat_feats = paddle.concat([features, agg_feats], axis=2) out = paddle.einsum('bnd,df->bnf', cat_feats, self.weight) out = F.relu(out + self.bias) return out class GCN(nn.Layer): def __init__(self, feat_len): super(GCN, self).__init__() self.bn0 = BatchNorm1D(feat_len, affine=False) self.conv1 = GraphConv(feat_len, 512) self.conv2 = GraphConv(512, 256) self.conv3 = GraphConv(256, 128) self.conv4 = GraphConv(128, 64) self.classifier = nn.Sequential( nn.Linear(64, 32), nn.PReLU(32), nn.Linear(32, 2)) def forward(self, x, A, knn_inds): num_local_graphs, num_max_nodes, feat_len = x.shape x = x.reshape([-1, feat_len]) x = self.bn0(x) x = x.reshape([num_local_graphs, num_max_nodes, feat_len]) x = self.conv1(x, A) x = self.conv2(x, A) x = self.conv3(x, A) x = self.conv4(x, A) k = knn_inds.shape[-1] mid_feat_len = x.shape[-1] edge_feat = paddle.zeros([num_local_graphs, k, mid_feat_len]) for graph_ind in range(num_local_graphs): edge_feat[graph_ind, :, :] = x[graph_ind][paddle.to_tensor(knn_inds[ graph_ind])] edge_feat = edge_feat.reshape([-1, mid_feat_len]) pred = self.classifier(edge_feat) return pred