123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133 |
- # copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import numpy as np
- import os
- import random
- from paddle.io import Dataset
- import json
- from copy import deepcopy
- from .imaug import transform, create_operators
- class PubTabDataSet(Dataset):
- def __init__(self, config, mode, logger, seed=None):
- super(PubTabDataSet, self).__init__()
- self.logger = logger
- global_config = config['Global']
- dataset_config = config[mode]['dataset']
- loader_config = config[mode]['loader']
- label_file_list = dataset_config.pop('label_file_list')
- data_source_num = len(label_file_list)
- ratio_list = dataset_config.get("ratio_list", [1.0])
- if isinstance(ratio_list, (float, int)):
- ratio_list = [float(ratio_list)] * int(data_source_num)
- assert len(
- ratio_list
- ) == data_source_num, "The length of ratio_list should be the same as the file_list."
- self.data_dir = dataset_config['data_dir']
- self.do_shuffle = loader_config['shuffle']
- self.seed = seed
- self.mode = mode.lower()
- logger.info("Initialize indexs of datasets:%s" % label_file_list)
- self.data_lines = self.get_image_info_list(label_file_list, ratio_list)
- # self.check(config['Global']['max_text_length'])
- if mode.lower() == "train" and self.do_shuffle:
- self.shuffle_data_random()
- self.ops = create_operators(dataset_config['transforms'], global_config)
- self.need_reset = True in [x < 1 for x in ratio_list]
- def get_image_info_list(self, file_list, ratio_list):
- if isinstance(file_list, str):
- file_list = [file_list]
- data_lines = []
- for idx, file in enumerate(file_list):
- with open(file, "rb") as f:
- lines = f.readlines()
- if self.mode == "train" or ratio_list[idx] < 1.0:
- random.seed(self.seed)
- lines = random.sample(lines,
- round(len(lines) * ratio_list[idx]))
- data_lines.extend(lines)
- return data_lines
- def check(self, max_text_length):
- data_lines = []
- for line in self.data_lines:
- data_line = line.decode('utf-8').strip("\n")
- info = json.loads(data_line)
- file_name = info['filename']
- cells = info['html']['cells'].copy()
- structure = info['html']['structure']['tokens'].copy()
- img_path = os.path.join(self.data_dir, file_name)
- if not os.path.exists(img_path):
- self.logger.warning("{} does not exist!".format(img_path))
- continue
- if len(structure) == 0 or len(structure) > max_text_length:
- continue
- # data = {'img_path': img_path, 'cells': cells, 'structure':structure,'file_name':file_name}
- data_lines.append(line)
- self.data_lines = data_lines
- def shuffle_data_random(self):
- if self.do_shuffle:
- random.seed(self.seed)
- random.shuffle(self.data_lines)
- return
- def __getitem__(self, idx):
- try:
- data_line = self.data_lines[idx]
- data_line = data_line.decode('utf-8').strip("\n")
- info = json.loads(data_line)
- file_name = info['filename']
- cells = info['html']['cells'].copy()
- structure = info['html']['structure']['tokens'].copy()
- img_path = os.path.join(self.data_dir, file_name)
- if not os.path.exists(img_path):
- raise Exception("{} does not exist!".format(img_path))
- data = {
- 'img_path': img_path,
- 'cells': cells,
- 'structure': structure,
- 'file_name': file_name
- }
- with open(data['img_path'], 'rb') as f:
- img = f.read()
- data['image'] = img
- outs = transform(data, self.ops)
- except:
- import traceback
- err = traceback.format_exc()
- self.logger.error(
- "When parsing line {}, error happened with msg: {}".format(
- data_line, err))
- outs = None
- if outs is None:
- rnd_idx = np.random.randint(self.__len__(
- )) if self.mode == "train" else (idx + 1) % self.__len__()
- return self.__getitem__(rnd_idx)
- return outs
- def __len__(self):
- return len(self.data_lines)
|