| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133 | # copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.## Licensed under the Apache License, Version 2.0 (the "License");# you may not use this file except in compliance with the License.# You may obtain a copy of the License at##    http://www.apache.org/licenses/LICENSE-2.0## Unless required by applicable law or agreed to in writing, software# distributed under the License is distributed on an "AS IS" BASIS,# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.# See the License for the specific language governing permissions and# limitations under the License.import numpy as npimport osimport randomfrom paddle.io import Datasetimport jsonfrom copy import deepcopyfrom .imaug import transform, create_operatorsclass PubTabDataSet(Dataset):    def __init__(self, config, mode, logger, seed=None):        super(PubTabDataSet, self).__init__()        self.logger = logger        global_config = config['Global']        dataset_config = config[mode]['dataset']        loader_config = config[mode]['loader']        label_file_list = dataset_config.pop('label_file_list')        data_source_num = len(label_file_list)        ratio_list = dataset_config.get("ratio_list", [1.0])        if isinstance(ratio_list, (float, int)):            ratio_list = [float(ratio_list)] * int(data_source_num)        assert len(            ratio_list        ) == data_source_num, "The length of ratio_list should be the same as the file_list."        self.data_dir = dataset_config['data_dir']        self.do_shuffle = loader_config['shuffle']        self.seed = seed        self.mode = mode.lower()        logger.info("Initialize indexs of datasets:%s" % label_file_list)        self.data_lines = self.get_image_info_list(label_file_list, ratio_list)        # self.check(config['Global']['max_text_length'])        if mode.lower() == "train" and self.do_shuffle:            self.shuffle_data_random()        self.ops = create_operators(dataset_config['transforms'], global_config)        self.need_reset = True in [x < 1 for x in ratio_list]    def get_image_info_list(self, file_list, ratio_list):        if isinstance(file_list, str):            file_list = [file_list]        data_lines = []        for idx, file in enumerate(file_list):            with open(file, "rb") as f:                lines = f.readlines()                if self.mode == "train" or ratio_list[idx] < 1.0:                    random.seed(self.seed)                    lines = random.sample(lines,                                          round(len(lines) * ratio_list[idx]))                data_lines.extend(lines)        return data_lines    def check(self, max_text_length):        data_lines = []        for line in self.data_lines:            data_line = line.decode('utf-8').strip("\n")            info = json.loads(data_line)            file_name = info['filename']            cells = info['html']['cells'].copy()            structure = info['html']['structure']['tokens'].copy()            img_path = os.path.join(self.data_dir, file_name)            if not os.path.exists(img_path):                self.logger.warning("{} does not exist!".format(img_path))                continue            if len(structure) == 0 or len(structure) > max_text_length:                continue            # data = {'img_path': img_path, 'cells': cells, 'structure':structure,'file_name':file_name}            data_lines.append(line)        self.data_lines = data_lines    def shuffle_data_random(self):        if self.do_shuffle:            random.seed(self.seed)            random.shuffle(self.data_lines)        return    def __getitem__(self, idx):        try:            data_line = self.data_lines[idx]            data_line = data_line.decode('utf-8').strip("\n")            info = json.loads(data_line)            file_name = info['filename']            cells = info['html']['cells'].copy()            structure = info['html']['structure']['tokens'].copy()            img_path = os.path.join(self.data_dir, file_name)            if not os.path.exists(img_path):                raise Exception("{} does not exist!".format(img_path))            data = {                'img_path': img_path,                'cells': cells,                'structure': structure,                'file_name': file_name            }            with open(data['img_path'], 'rb') as f:                img = f.read()                data['image'] = img            outs = transform(data, self.ops)        except:            import traceback            err = traceback.format_exc()            self.logger.error(                "When parsing line {}, error happened with msg: {}".format(                    data_line, err))            outs = None        if outs is None:            rnd_idx = np.random.randint(self.__len__(            )) if self.mode == "train" else (idx + 1) % self.__len__()            return self.__getitem__(rnd_idx)        return outs    def __len__(self):        return len(self.data_lines)
 |