root 079379557a init 1 год назад
..
custom_op 079379557a init 1 год назад
slim 079379557a init 1 год назад
test_tipc 079379557a init 1 год назад
__init__.py 079379557a init 1 год назад
config.py 079379557a init 1 год назад
data.py 079379557a init 1 год назад
data_loader.py 079379557a init 1 год назад
load_cifar.py 079379557a init 1 год назад
loss.py 079379557a init 1 год назад
metric.py 079379557a init 1 год назад
mv3.py 079379557a init 1 год назад
mv3_distill.yml 079379557a init 1 год назад
mv3_large_x0_5.yml 079379557a init 1 год назад
optimizer.py 079379557a init 1 год назад
readme.md 079379557a init 1 год назад
requirements.txt 079379557a init 1 год назад
train.py 079379557a init 1 год назад
train.sh 079379557a init 1 год назад
utils.py 079379557a init 1 год назад

readme.md

TIPC Linux端补充训练功能测试

Linux端基础训练预测功能测试的主程序为test_train_python.sh,可以测试基于Python的模型训练、评估等基本功能,包括裁剪、量化、蒸馏训练。

测试链条如上图所示,主要测试内容有带共享权重,自定义OP的模型的正常训练和slim相关功能训练流程是否正常。

2. 测试流程

本节介绍补充链条的测试流程

2.1 安装依赖

  • 安装PaddlePaddle >= 2.2
  • 安装其他依赖

    pip3 install -r requirements.txt
    

2.2 功能测试

test_train_python.sh包含2种运行模式,每种模式的运行数据不同,分别用于测试训练是否正常,分别是:

  • 模式1:lite_train_lite_infer,使用少量数据训练,用于快速验证训练到预测的走通流程,不验证精度和速度;

    bash test_tipc/test_train_python.sh ./test_tipc/train_infer_python.txt 'lite_train_lite_infer'
    
  • 模式2:whole_train_whole_infer,使用全量数据训练,用于快速验证训练到预测的走通流程,验证模型最终训练精度;

    bash test_tipc/test_train_python.sh ./test_tipc/train_infer_python.txt 'whole_train_whole_infer'
    

如果是运行量化裁剪等训练方式,需要使用不同的配置文件。量化训练的测试指令如下:

bash test_tipc/test_train_python.sh ./test_tipc/train_infer_python_PACT.txt 'lite_train_lite_infer'

同理,FPGM裁剪的运行方式如下:

bash test_tipc/test_train_python.sh ./test_tipc/train_infer_python_FPGM.txt 'lite_train_lite_infer'

多机多卡的运行配置文件分别为 train_infer_python_fleet.txt, train_infer_python_FPGM_fleet.txttrain_infer_python_PACT_fleet.txt。 运行时,需要修改配置文件中的 gpu_list:xx.xx.xx.xx,yy.yy.yy.yy;0,1。 将 xx.xx.xx.xx 替换为具体的 ip 地址,各个ip地址之间用,分隔。 另外,和单机训练 不同,启动多机多卡训练需要在多机的每个节点上分别运行命令。以多机多卡量化训练为例,指令如下:

bash test_tipc/test_train_python.sh ./test_tipc/train_infer_python_PACT_fleet.txt 'lite_train_lite_infer'

运行相应指令后,在test_tipc/output文件夹下自动会保存运行日志。如'lite_train_lite_infer'模式运行后,在test_tipc/extra_output文件夹有以下文件:

test_tipc/output/
|- results_python.log    # 运行指令状态的日志

其中results_python.log中包含了每条指令的运行状态,如果运行成功会输出:

Run successfully with command - python3.7 train.py -c mv3_large_x0_5.yml -o  use_gpu=True     epoch=20       AMP.use_amp=True TRAIN.batch_size=1280  use_custom_relu=False model_type=cls MODEL.siamese=False  !  
Run successfully with command - python3.7 train.py -c mv3_large_x0_5.yml -o  use_gpu=True     epoch=2       AMP.use_amp=True TRAIN.batch_size=1280  use_custom_relu=False model_type=cls MODEL.siamese=False  !  
Run successfully with command - python3.7 train.py -c mv3_large_x0_5.yml -o  use_gpu=True     epoch=2       AMP.use_amp=True TRAIN.batch_size=1280  use_custom_relu=False model_type=cls MODEL.siamese=True  !  
Run successfully with command - python3.7 train.py -c mv3_large_x0_5.yml -o  use_gpu=True     epoch=2       AMP.use_amp=True TRAIN.batch_size=1280  use_custom_relu=False model_type=cls_distill MODEL.siamese=False  !  
Run successfully with command - python3.7 train.py -c mv3_large_x0_5.yml -o  use_gpu=True     epoch=2       AMP.use_amp=True TRAIN.batch_size=1280  use_custom_relu=False model_type=cls_distill MODEL.siamese=True  !  
Run successfully with command - python3.7 train.py -c mv3_large_x0_5.yml -o  use_gpu=True     epoch=2       AMP.use_amp=True TRAIN.batch_size=1280  use_custom_relu=False model_type=cls_distill_multiopt MODEL.siamese=False  !