123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164 |
- # Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import os
- import sys
- import logging
- import functools
- import paddle.distributed as dist
- logger_initialized = {}
- def print_dict(d, logger, delimiter=0):
- """
- Recursively visualize a dict and
- indenting acrrording by the relationship of keys.
- """
- for k, v in sorted(d.items()):
- if isinstance(v, dict):
- logger.info("{}{} : ".format(delimiter * " ", str(k)))
- print_dict(v, logger, delimiter + 4)
- elif isinstance(v, list) and len(v) >= 1 and isinstance(v[0], dict):
- logger.info("{}{} : ".format(delimiter * " ", str(k)))
- for value in v:
- print_dict(value, logger, delimiter + 4)
- else:
- logger.info("{}{} : {}".format(delimiter * " ", k, v))
- @functools.lru_cache()
- def get_logger(name='root', log_file=None, log_level=logging.DEBUG):
- """Initialize and get a logger by name.
- If the logger has not been initialized, this method will initialize the
- logger by adding one or two handlers, otherwise the initialized logger will
- be directly returned. During initialization, a StreamHandler will always be
- added. If `log_file` is specified a FileHandler will also be added.
- Args:
- name (str): Logger name.
- log_file (str | None): The log filename. If specified, a FileHandler
- will be added to the logger.
- log_level (int): The logger level. Note that only the process of
- rank 0 is affected, and other processes will set the level to
- "Error" thus be silent most of the time.
- Returns:
- logging.Logger: The expected logger.
- """
- logger = logging.getLogger(name)
- if name in logger_initialized:
- return logger
- for logger_name in logger_initialized:
- if name.startswith(logger_name):
- return logger
- formatter = logging.Formatter(
- '[%(asctime)s] %(name)s %(levelname)s: %(message)s',
- datefmt="%Y/%m/%d %H:%M:%S")
- stream_handler = logging.StreamHandler(stream=sys.stdout)
- stream_handler.setFormatter(formatter)
- logger.addHandler(stream_handler)
- if log_file is not None and dist.get_rank() == 0:
- log_file_folder = os.path.split(log_file)[0]
- os.makedirs(log_file_folder, exist_ok=True)
- file_handler = logging.FileHandler(log_file, 'a')
- file_handler.setFormatter(formatter)
- logger.addHandler(file_handler)
- if dist.get_rank() == 0:
- logger.setLevel(log_level)
- else:
- logger.setLevel(logging.ERROR)
- logger_initialized[name] = True
- return logger
- def load_model(config, model, optimizer=None):
- """
- load model from checkpoint or pretrained_model
- """
- logger = get_logger()
- checkpoints = config.get('checkpoints')
- pretrained_model = config.get('pretrained_model')
- best_model_dict = {}
- if checkpoints:
- if checkpoints.endswith('.pdparams'):
- checkpoints = checkpoints.replace('.pdparams', '')
- assert os.path.exists(checkpoints + ".pdparams"), \
- "The {}.pdparams does not exists!".format(checkpoints)
- # load params from trained model
- params = paddle.load(checkpoints + '.pdparams')
- state_dict = model.state_dict()
- new_state_dict = {}
- for key, value in state_dict.items():
- if key not in params:
- logger.warning("{} not in loaded params {} !".format(
- key, params.keys()))
- continue
- pre_value = params[key]
- if list(value.shape) == list(pre_value.shape):
- new_state_dict[key] = pre_value
- else:
- logger.warning(
- "The shape of model params {} {} not matched with loaded params shape {} !".
- format(key, value.shape, pre_value.shape))
- model.set_state_dict(new_state_dict)
- if optimizer is not None:
- if os.path.exists(checkpoints + '.pdopt'):
- optim_dict = paddle.load(checkpoints + '.pdopt')
- optimizer.set_state_dict(optim_dict)
- else:
- logger.warning(
- "{}.pdopt is not exists, params of optimizer is not loaded".
- format(checkpoints))
- if os.path.exists(checkpoints + '.states'):
- with open(checkpoints + '.states', 'rb') as f:
- states_dict = pickle.load(f) if six.PY2 else pickle.load(
- f, encoding='latin1')
- best_model_dict = states_dict.get('best_model_dict', {})
- if 'epoch' in states_dict:
- best_model_dict['start_epoch'] = states_dict['epoch'] + 1
- logger.info("resume from {}".format(checkpoints))
- elif pretrained_model:
- load_pretrained_params(model, pretrained_model)
- else:
- logger.info('train from scratch')
- return best_model_dict
- def load_pretrained_params(model, path):
- logger = get_logger()
- if path.endswith('.pdparams'):
- path = path.replace('.pdparams', '')
- assert os.path.exists(path + ".pdparams"), \
- "The {}.pdparams does not exists!".format(path)
- params = paddle.load(path + '.pdparams')
- state_dict = model.state_dict()
- new_state_dict = {}
- for k1 in params.keys():
- if k1 not in state_dict.keys():
- logger.warning("The pretrained params {} not in model".format(k1))
- else:
- if list(state_dict[k1].shape) == list(params[k1].shape):
- new_state_dict[k1] = params[k1]
- else:
- logger.warning(
- "The shape of model params {} {} not matched with loaded params {} {} !".
- format(k1, state_dict[k1].shape, k1, params[k1].shape))
- model.set_state_dict(new_state_dict)
- logger.info("load pretrain successful from {}".format(path))
- return model
|