123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140 |
- import numpy as np
- import paddle
- import os
- import cv2
- import glob
- def transform(data, ops=None):
- """ transform """
- if ops is None:
- ops = []
- for op in ops:
- data = op(data)
- if data is None:
- return None
- return data
- def create_operators(op_param_list, global_config=None):
- """
- create operators based on the config
- Args:
- params(list): a dict list, used to create some operators
- """
- assert isinstance(op_param_list, list), ('operator config should be a list')
- ops = []
- for operator in op_param_list:
- assert isinstance(operator,
- dict) and len(operator) == 1, "yaml format error"
- op_name = list(operator)[0]
- param = {} if operator[op_name] is None else operator[op_name]
- if global_config is not None:
- param.update(global_config)
- op = eval(op_name)(**param)
- ops.append(op)
- return ops
- class DecodeImage(object):
- """ decode image """
- def __init__(self, img_mode='RGB', channel_first=False, **kwargs):
- self.img_mode = img_mode
- self.channel_first = channel_first
- def __call__(self, data):
- img = data['image']
- if six.PY2:
- assert type(img) is str and len(
- img) > 0, "invalid input 'img' in DecodeImage"
- else:
- assert type(img) is bytes and len(
- img) > 0, "invalid input 'img' in DecodeImage"
- img = np.frombuffer(img, dtype='uint8')
- img = cv2.imdecode(img, 1)
- if img is None:
- return None
- if self.img_mode == 'GRAY':
- img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
- elif self.img_mode == 'RGB':
- assert img.shape[2] == 3, 'invalid shape of image[%s]' % (img.shape)
- img = img[:, :, ::-1]
- if self.channel_first:
- img = img.transpose((2, 0, 1))
- data['image'] = img
- data['src_image'] = img
- return data
- class NormalizeImage(object):
- """ normalize image such as substract mean, divide std
- """
- def __init__(self, scale=None, mean=None, std=None, order='chw', **kwargs):
- if isinstance(scale, str):
- scale = eval(scale)
- self.scale = np.float32(scale if scale is not None else 1.0 / 255.0)
- mean = mean if mean is not None else [0.485, 0.456, 0.406]
- std = std if std is not None else [0.229, 0.224, 0.225]
- shape = (3, 1, 1) if order == 'chw' else (1, 1, 3)
- self.mean = np.array(mean).reshape(shape).astype('float32')
- self.std = np.array(std).reshape(shape).astype('float32')
- def __call__(self, data):
- img = data['image']
- from PIL import Image
- if isinstance(img, Image.Image):
- img = np.array(img)
- assert isinstance(img,
- np.ndarray), "invalid input 'img' in NormalizeImage"
- data['image'] = (
- img.astype('float32') * self.scale - self.mean) / self.std
- return data
- class ToCHWImage(object):
- """ convert hwc image to chw image
- """
- def __init__(self, **kwargs):
- pass
- def __call__(self, data):
- img = data['image']
- from PIL import Image
- if isinstance(img, Image.Image):
- img = np.array(img)
- data['image'] = img.transpose((2, 0, 1))
- src_img = data['src_image']
- from PIL import Image
- if isinstance(img, Image.Image):
- src_img = np.array(src_img)
- data['src_image'] = img.transpose((2, 0, 1))
- return data
- class SimpleDataset(nn.Dataset):
- def __init__(self, config, mode, logger, seed=None):
- self.logger = logger
- self.mode = mode.lower()
- data_dir = config['Train']['data_dir']
- imgs_list = self.get_image_list(data_dir)
- self.ops = create_operators(cfg['transforms'], None)
- def get_image_list(self, img_dir):
- imgs = glob.glob(os.path.join(img_dir, "*.png"))
- if len(imgs) == 0:
- raise ValueError(f"not any images founded in {img_dir}")
- return imgs
- def __getitem__(self, idx):
- return None
|