| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276 | # Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.## Licensed under the Apache License, Version 2.0 (the "License");# you may not use this file except in compliance with the License.# You may obtain a copy of the License at##     http://www.apache.org/licenses/LICENSE-2.0## Unless required by applicable law or agreed to in writing, software# distributed under the License is distributed on an "AS IS" BASIS,# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.# See the License for the specific language governing permissions and# limitations under the License."""This code is refered from:https://github.com/WenmuZhou/DBNet.pytorch/blob/master/post_processing/seg_detector_representer.py"""from __future__ import absolute_importfrom __future__ import divisionfrom __future__ import print_functionimport numpy as npimport cv2import paddlefrom shapely.geometry import Polygonimport pyclipperclass DBPostProcess(object):    """    The post process for Differentiable Binarization (DB).    """    def __init__(self,                 thresh=0.3,                 box_thresh=0.7,                 max_candidates=1000,                 unclip_ratio=2.0,                 use_dilation=False,                 score_mode="fast",                 box_type='quad',                 **kwargs):        self.thresh = thresh        self.box_thresh = box_thresh        self.max_candidates = max_candidates        self.unclip_ratio = unclip_ratio        self.min_size = 3        self.score_mode = score_mode        self.box_type = box_type        assert score_mode in [            "slow", "fast"        ], "Score mode must be in [slow, fast] but got: {}".format(score_mode)        self.dilation_kernel = None if not use_dilation else np.array(            [[1, 1], [1, 1]])    def polygons_from_bitmap(self, pred, _bitmap, dest_width, dest_height):        '''        _bitmap: single map with shape (1, H, W),            whose values are binarized as {0, 1}        '''        bitmap = _bitmap        height, width = bitmap.shape        boxes = []        scores = []        contours, _ = cv2.findContours((bitmap * 255).astype(np.uint8),                                       cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)        for contour in contours[:self.max_candidates]:            epsilon = 0.002 * cv2.arcLength(contour, True)            approx = cv2.approxPolyDP(contour, epsilon, True)            points = approx.reshape((-1, 2))            if points.shape[0] < 4:                continue            score = self.box_score_fast(pred, points.reshape(-1, 2))            if self.box_thresh > score:                continue            if points.shape[0] > 2:                box = self.unclip(points, self.unclip_ratio)                if len(box) > 1:                    continue            else:                continue            box = box.reshape(-1, 2)            _, sside = self.get_mini_boxes(box.reshape((-1, 1, 2)))            if sside < self.min_size + 2:                continue            box = np.array(box)            box[:, 0] = np.clip(                np.round(box[:, 0] / width * dest_width), 0, dest_width)            box[:, 1] = np.clip(                np.round(box[:, 1] / height * dest_height), 0, dest_height)            boxes.append(box.tolist())            scores.append(score)        return boxes, scores    def boxes_from_bitmap(self, pred, _bitmap, dest_width, dest_height):        '''        _bitmap: single map with shape (1, H, W),                whose values are binarized as {0, 1}        '''        bitmap = _bitmap        height, width = bitmap.shape        outs = cv2.findContours((bitmap * 255).astype(np.uint8), cv2.RETR_LIST,                                cv2.CHAIN_APPROX_SIMPLE)        if len(outs) == 3:            img, contours, _ = outs[0], outs[1], outs[2]        elif len(outs) == 2:            contours, _ = outs[0], outs[1]        num_contours = min(len(contours), self.max_candidates)        boxes = []        scores = []        for index in range(num_contours):            contour = contours[index]            points, sside = self.get_mini_boxes(contour)            if sside < self.min_size:                continue            points = np.array(points)            if self.score_mode == "fast":                score = self.box_score_fast(pred, points.reshape(-1, 2))            else:                score = self.box_score_slow(pred, contour)            if self.box_thresh > score:                continue            box = self.unclip(points, self.unclip_ratio).reshape(-1, 1, 2)            box, sside = self.get_mini_boxes(box)            if sside < self.min_size + 2:                continue            box = np.array(box)            box[:, 0] = np.clip(                np.round(box[:, 0] / width * dest_width), 0, dest_width)            box[:, 1] = np.clip(                np.round(box[:, 1] / height * dest_height), 0, dest_height)            boxes.append(box.astype("int32"))            scores.append(score)        return np.array(boxes, dtype="int32"), scores    def unclip(self, box, unclip_ratio):        poly = Polygon(box)        distance = poly.area * unclip_ratio / poly.length        offset = pyclipper.PyclipperOffset()        offset.AddPath(box, pyclipper.JT_ROUND, pyclipper.ET_CLOSEDPOLYGON)        expanded = np.array(offset.Execute(distance))        return expanded    def get_mini_boxes(self, contour):        bounding_box = cv2.minAreaRect(contour)        points = sorted(list(cv2.boxPoints(bounding_box)), key=lambda x: x[0])        index_1, index_2, index_3, index_4 = 0, 1, 2, 3        if points[1][1] > points[0][1]:            index_1 = 0            index_4 = 1        else:            index_1 = 1            index_4 = 0        if points[3][1] > points[2][1]:            index_2 = 2            index_3 = 3        else:            index_2 = 3            index_3 = 2        box = [            points[index_1], points[index_2], points[index_3], points[index_4]        ]        return box, min(bounding_box[1])    def box_score_fast(self, bitmap, _box):        '''        box_score_fast: use bbox mean score as the mean score        '''        h, w = bitmap.shape[:2]        box = _box.copy()        xmin = np.clip(np.floor(box[:, 0].min()).astype("int32"), 0, w - 1)        xmax = np.clip(np.ceil(box[:, 0].max()).astype("int32"), 0, w - 1)        ymin = np.clip(np.floor(box[:, 1].min()).astype("int32"), 0, h - 1)        ymax = np.clip(np.ceil(box[:, 1].max()).astype("int32"), 0, h - 1)        mask = np.zeros((ymax - ymin + 1, xmax - xmin + 1), dtype=np.uint8)        box[:, 0] = box[:, 0] - xmin        box[:, 1] = box[:, 1] - ymin        cv2.fillPoly(mask, box.reshape(1, -1, 2).astype("int32"), 1)        return cv2.mean(bitmap[ymin:ymax + 1, xmin:xmax + 1], mask)[0]    def box_score_slow(self, bitmap, contour):        '''        box_score_slow: use polyon mean score as the mean score        '''        h, w = bitmap.shape[:2]        contour = contour.copy()        contour = np.reshape(contour, (-1, 2))        xmin = np.clip(np.min(contour[:, 0]), 0, w - 1)        xmax = np.clip(np.max(contour[:, 0]), 0, w - 1)        ymin = np.clip(np.min(contour[:, 1]), 0, h - 1)        ymax = np.clip(np.max(contour[:, 1]), 0, h - 1)        mask = np.zeros((ymax - ymin + 1, xmax - xmin + 1), dtype=np.uint8)        contour[:, 0] = contour[:, 0] - xmin        contour[:, 1] = contour[:, 1] - ymin        cv2.fillPoly(mask, contour.reshape(1, -1, 2).astype("int32"), 1)        return cv2.mean(bitmap[ymin:ymax + 1, xmin:xmax + 1], mask)[0]    def __call__(self, outs_dict, shape_list):        pred = outs_dict['maps']        if isinstance(pred, paddle.Tensor):            pred = pred.numpy()        pred = pred[:, 0, :, :]        segmentation = pred > self.thresh        boxes_batch = []        for batch_index in range(pred.shape[0]):            src_h, src_w, ratio_h, ratio_w = shape_list[batch_index]            if self.dilation_kernel is not None:                mask = cv2.dilate(                    np.array(segmentation[batch_index]).astype(np.uint8),                    self.dilation_kernel)            else:                mask = segmentation[batch_index]            if self.box_type == 'poly':                boxes, scores = self.polygons_from_bitmap(pred[batch_index],                                                          mask, src_w, src_h)            elif self.box_type == 'quad':                boxes, scores = self.boxes_from_bitmap(pred[batch_index], mask,                                                       src_w, src_h)            else:                raise ValueError("box_type can only be one of ['quad', 'poly']")            boxes_batch.append({'points': boxes})        return boxes_batchclass DistillationDBPostProcess(object):    def __init__(self,                 model_name=["student"],                 key=None,                 thresh=0.3,                 box_thresh=0.6,                 max_candidates=1000,                 unclip_ratio=1.5,                 use_dilation=False,                 score_mode="fast",                 box_type='quad',                 **kwargs):        self.model_name = model_name        self.key = key        self.post_process = DBPostProcess(            thresh=thresh,            box_thresh=box_thresh,            max_candidates=max_candidates,            unclip_ratio=unclip_ratio,            use_dilation=use_dilation,            score_mode=score_mode,            box_type=box_type)    def __call__(self, predicts, shape_list):        results = {}        for k in self.model_name:            results[k] = self.post_process(predicts[k], shape_list=shape_list)        return results
 |