123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276 |
- # Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- """
- This code is refered from:
- https://github.com/WenmuZhou/DBNet.pytorch/blob/master/post_processing/seg_detector_representer.py
- """
- from __future__ import absolute_import
- from __future__ import division
- from __future__ import print_function
- import numpy as np
- import cv2
- import paddle
- from shapely.geometry import Polygon
- import pyclipper
- class DBPostProcess(object):
- """
- The post process for Differentiable Binarization (DB).
- """
- def __init__(self,
- thresh=0.3,
- box_thresh=0.7,
- max_candidates=1000,
- unclip_ratio=2.0,
- use_dilation=False,
- score_mode="fast",
- box_type='quad',
- **kwargs):
- self.thresh = thresh
- self.box_thresh = box_thresh
- self.max_candidates = max_candidates
- self.unclip_ratio = unclip_ratio
- self.min_size = 3
- self.score_mode = score_mode
- self.box_type = box_type
- assert score_mode in [
- "slow", "fast"
- ], "Score mode must be in [slow, fast] but got: {}".format(score_mode)
- self.dilation_kernel = None if not use_dilation else np.array(
- [[1, 1], [1, 1]])
- def polygons_from_bitmap(self, pred, _bitmap, dest_width, dest_height):
- '''
- _bitmap: single map with shape (1, H, W),
- whose values are binarized as {0, 1}
- '''
- bitmap = _bitmap
- height, width = bitmap.shape
- boxes = []
- scores = []
- contours, _ = cv2.findContours((bitmap * 255).astype(np.uint8),
- cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
- for contour in contours[:self.max_candidates]:
- epsilon = 0.002 * cv2.arcLength(contour, True)
- approx = cv2.approxPolyDP(contour, epsilon, True)
- points = approx.reshape((-1, 2))
- if points.shape[0] < 4:
- continue
- score = self.box_score_fast(pred, points.reshape(-1, 2))
- if self.box_thresh > score:
- continue
- if points.shape[0] > 2:
- box = self.unclip(points, self.unclip_ratio)
- if len(box) > 1:
- continue
- else:
- continue
- box = box.reshape(-1, 2)
- _, sside = self.get_mini_boxes(box.reshape((-1, 1, 2)))
- if sside < self.min_size + 2:
- continue
- box = np.array(box)
- box[:, 0] = np.clip(
- np.round(box[:, 0] / width * dest_width), 0, dest_width)
- box[:, 1] = np.clip(
- np.round(box[:, 1] / height * dest_height), 0, dest_height)
- boxes.append(box.tolist())
- scores.append(score)
- return boxes, scores
- def boxes_from_bitmap(self, pred, _bitmap, dest_width, dest_height):
- '''
- _bitmap: single map with shape (1, H, W),
- whose values are binarized as {0, 1}
- '''
- bitmap = _bitmap
- height, width = bitmap.shape
- outs = cv2.findContours((bitmap * 255).astype(np.uint8), cv2.RETR_LIST,
- cv2.CHAIN_APPROX_SIMPLE)
- if len(outs) == 3:
- img, contours, _ = outs[0], outs[1], outs[2]
- elif len(outs) == 2:
- contours, _ = outs[0], outs[1]
- num_contours = min(len(contours), self.max_candidates)
- boxes = []
- scores = []
- for index in range(num_contours):
- contour = contours[index]
- points, sside = self.get_mini_boxes(contour)
- if sside < self.min_size:
- continue
- points = np.array(points)
- if self.score_mode == "fast":
- score = self.box_score_fast(pred, points.reshape(-1, 2))
- else:
- score = self.box_score_slow(pred, contour)
- if self.box_thresh > score:
- continue
- box = self.unclip(points, self.unclip_ratio).reshape(-1, 1, 2)
- box, sside = self.get_mini_boxes(box)
- if sside < self.min_size + 2:
- continue
- box = np.array(box)
- box[:, 0] = np.clip(
- np.round(box[:, 0] / width * dest_width), 0, dest_width)
- box[:, 1] = np.clip(
- np.round(box[:, 1] / height * dest_height), 0, dest_height)
- boxes.append(box.astype("int32"))
- scores.append(score)
- return np.array(boxes, dtype="int32"), scores
- def unclip(self, box, unclip_ratio):
- poly = Polygon(box)
- distance = poly.area * unclip_ratio / poly.length
- offset = pyclipper.PyclipperOffset()
- offset.AddPath(box, pyclipper.JT_ROUND, pyclipper.ET_CLOSEDPOLYGON)
- expanded = np.array(offset.Execute(distance))
- return expanded
- def get_mini_boxes(self, contour):
- bounding_box = cv2.minAreaRect(contour)
- points = sorted(list(cv2.boxPoints(bounding_box)), key=lambda x: x[0])
- index_1, index_2, index_3, index_4 = 0, 1, 2, 3
- if points[1][1] > points[0][1]:
- index_1 = 0
- index_4 = 1
- else:
- index_1 = 1
- index_4 = 0
- if points[3][1] > points[2][1]:
- index_2 = 2
- index_3 = 3
- else:
- index_2 = 3
- index_3 = 2
- box = [
- points[index_1], points[index_2], points[index_3], points[index_4]
- ]
- return box, min(bounding_box[1])
- def box_score_fast(self, bitmap, _box):
- '''
- box_score_fast: use bbox mean score as the mean score
- '''
- h, w = bitmap.shape[:2]
- box = _box.copy()
- xmin = np.clip(np.floor(box[:, 0].min()).astype("int32"), 0, w - 1)
- xmax = np.clip(np.ceil(box[:, 0].max()).astype("int32"), 0, w - 1)
- ymin = np.clip(np.floor(box[:, 1].min()).astype("int32"), 0, h - 1)
- ymax = np.clip(np.ceil(box[:, 1].max()).astype("int32"), 0, h - 1)
- mask = np.zeros((ymax - ymin + 1, xmax - xmin + 1), dtype=np.uint8)
- box[:, 0] = box[:, 0] - xmin
- box[:, 1] = box[:, 1] - ymin
- cv2.fillPoly(mask, box.reshape(1, -1, 2).astype("int32"), 1)
- return cv2.mean(bitmap[ymin:ymax + 1, xmin:xmax + 1], mask)[0]
- def box_score_slow(self, bitmap, contour):
- '''
- box_score_slow: use polyon mean score as the mean score
- '''
- h, w = bitmap.shape[:2]
- contour = contour.copy()
- contour = np.reshape(contour, (-1, 2))
- xmin = np.clip(np.min(contour[:, 0]), 0, w - 1)
- xmax = np.clip(np.max(contour[:, 0]), 0, w - 1)
- ymin = np.clip(np.min(contour[:, 1]), 0, h - 1)
- ymax = np.clip(np.max(contour[:, 1]), 0, h - 1)
- mask = np.zeros((ymax - ymin + 1, xmax - xmin + 1), dtype=np.uint8)
- contour[:, 0] = contour[:, 0] - xmin
- contour[:, 1] = contour[:, 1] - ymin
- cv2.fillPoly(mask, contour.reshape(1, -1, 2).astype("int32"), 1)
- return cv2.mean(bitmap[ymin:ymax + 1, xmin:xmax + 1], mask)[0]
- def __call__(self, outs_dict, shape_list):
- pred = outs_dict['maps']
- if isinstance(pred, paddle.Tensor):
- pred = pred.numpy()
- pred = pred[:, 0, :, :]
- segmentation = pred > self.thresh
- boxes_batch = []
- for batch_index in range(pred.shape[0]):
- src_h, src_w, ratio_h, ratio_w = shape_list[batch_index]
- if self.dilation_kernel is not None:
- mask = cv2.dilate(
- np.array(segmentation[batch_index]).astype(np.uint8),
- self.dilation_kernel)
- else:
- mask = segmentation[batch_index]
- if self.box_type == 'poly':
- boxes, scores = self.polygons_from_bitmap(pred[batch_index],
- mask, src_w, src_h)
- elif self.box_type == 'quad':
- boxes, scores = self.boxes_from_bitmap(pred[batch_index], mask,
- src_w, src_h)
- else:
- raise ValueError("box_type can only be one of ['quad', 'poly']")
- boxes_batch.append({'points': boxes})
- return boxes_batch
- class DistillationDBPostProcess(object):
- def __init__(self,
- model_name=["student"],
- key=None,
- thresh=0.3,
- box_thresh=0.6,
- max_candidates=1000,
- unclip_ratio=1.5,
- use_dilation=False,
- score_mode="fast",
- box_type='quad',
- **kwargs):
- self.model_name = model_name
- self.key = key
- self.post_process = DBPostProcess(
- thresh=thresh,
- box_thresh=box_thresh,
- max_candidates=max_candidates,
- unclip_ratio=unclip_ratio,
- use_dilation=use_dilation,
- score_mode=score_mode,
- box_type=box_type)
- def __call__(self, predicts, shape_list):
- results = {}
- for k in self.model_name:
- results[k] = self.post_process(predicts[k], shape_list=shape_list)
- return results
|