12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788 |
- from __future__ import absolute_import
- from __future__ import division
- from __future__ import print_function
- import os
- import pickle
- import paddle
- import paddle.nn as nn
- import paddle.nn.functional as F
- class CenterLoss(nn.Layer):
- """
- Reference: Wen et al. A Discriminative Feature Learning Approach for Deep Face Recognition. ECCV 2016.
- """
- def __init__(self, num_classes=6625, feat_dim=96, center_file_path=None):
- super().__init__()
- self.num_classes = num_classes
- self.feat_dim = feat_dim
- self.centers = paddle.randn(
- shape=[self.num_classes, self.feat_dim]).astype("float64")
- if center_file_path is not None:
- assert os.path.exists(
- center_file_path
- ), f"center path({center_file_path}) must exist when it is not None."
- with open(center_file_path, 'rb') as f:
- char_dict = pickle.load(f)
- for key in char_dict.keys():
- self.centers[key] = paddle.to_tensor(char_dict[key])
- def __call__(self, predicts, batch):
- assert isinstance(predicts, (list, tuple))
- features, predicts = predicts
- feats_reshape = paddle.reshape(
- features, [-1, features.shape[-1]]).astype("float64")
- label = paddle.argmax(predicts, axis=2)
- label = paddle.reshape(label, [label.shape[0] * label.shape[1]])
- batch_size = feats_reshape.shape[0]
-
- square_feat = paddle.sum(paddle.square(feats_reshape),
- axis=1,
- keepdim=True)
- square_feat = paddle.expand(square_feat, [batch_size, self.num_classes])
- square_center = paddle.sum(paddle.square(self.centers),
- axis=1,
- keepdim=True)
- square_center = paddle.expand(
- square_center, [self.num_classes, batch_size]).astype("float64")
- square_center = paddle.transpose(square_center, [1, 0])
- distmat = paddle.add(square_feat, square_center)
- feat_dot_center = paddle.matmul(feats_reshape,
- paddle.transpose(self.centers, [1, 0]))
- distmat = distmat - 2.0 * feat_dot_center
-
- classes = paddle.arange(self.num_classes).astype("int64")
- label = paddle.expand(
- paddle.unsqueeze(label, 1), (batch_size, self.num_classes))
- mask = paddle.equal(
- paddle.expand(classes, [batch_size, self.num_classes]),
- label).astype("float64")
- dist = paddle.multiply(distmat, mask)
- loss = paddle.sum(paddle.clip(dist, min=1e-12, max=1e+12)) / batch_size
- return {'loss_center': loss}
|