1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677 |
- from __future__ import absolute_import
- from __future__ import division
- from __future__ import print_function
- import os
- import sys
- import pickle
- __dir__ = os.path.dirname(os.path.abspath(__file__))
- sys.path.append(__dir__)
- sys.path.append(os.path.abspath(os.path.join(__dir__, '..')))
- from ppocr.data import build_dataloader
- from ppocr.modeling.architectures import build_model
- from ppocr.postprocess import build_post_process
- from ppocr.utils.save_load import load_model
- from ppocr.utils.utility import print_dict
- import tools.program as program
- def main():
- global_config = config['Global']
-
- config['Eval']['dataset']['name'] = config['Train']['dataset']['name']
- config['Eval']['dataset']['data_dir'] = config['Train']['dataset'][
- 'data_dir']
- config['Eval']['dataset']['label_file_list'] = config['Train']['dataset'][
- 'label_file_list']
- eval_dataloader = build_dataloader(config, 'Eval', device, logger)
-
- post_process_class = build_post_process(config['PostProcess'],
- global_config)
-
-
- if hasattr(post_process_class, 'character'):
- char_num = len(getattr(post_process_class, 'character'))
- config['Architecture']["Head"]['out_channels'] = char_num
-
- config['Architecture']["Head"]["return_feats"] = True
- model = build_model(config['Architecture'])
- best_model_dict = load_model(config, model)
- if len(best_model_dict):
- logger.info('metric in ckpt ***************')
- for k, v in best_model_dict.items():
- logger.info('{}:{}'.format(k, v))
-
- char_center = program.get_center(model, eval_dataloader, post_process_class)
-
- with open("train_center.pkl", 'wb') as f:
- pickle.dump(char_center, f)
- return
- if __name__ == '__main__':
- config, device, logger, vdl_writer = program.preprocess()
- main()
|