123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181 |
- // Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
- //
- // Licensed under the Apache License, Version 2.0 (the "License");
- // you may not use this file except in compliance with the License.
- // You may obtain a copy of the License at
- //
- // http://www.apache.org/licenses/LICENSE-2.0
- //
- // Unless required by applicable law or agreed to in writing, software
- // distributed under the License is distributed on an "AS IS" BASIS,
- // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- // See the License for the specific language governing permissions and
- // limitations under the License.
- #include <include/ocr_rec.h>
- namespace PaddleOCR {
- void CRNNRecognizer::Run(std::vector<cv::Mat> img_list,
- std::vector<std::string> &rec_texts,
- std::vector<float> &rec_text_scores,
- std::vector<double> ×) {
- std::chrono::duration<float> preprocess_diff =
- std::chrono::steady_clock::now() - std::chrono::steady_clock::now();
- std::chrono::duration<float> inference_diff =
- std::chrono::steady_clock::now() - std::chrono::steady_clock::now();
- std::chrono::duration<float> postprocess_diff =
- std::chrono::steady_clock::now() - std::chrono::steady_clock::now();
- int img_num = img_list.size();
- std::vector<float> width_list;
- for (int i = 0; i < img_num; i++) {
- width_list.push_back(float(img_list[i].cols) / img_list[i].rows);
- }
- std::vector<int> indices = Utility::argsort(width_list);
- for (int beg_img_no = 0; beg_img_no < img_num;
- beg_img_no += this->rec_batch_num_) {
- auto preprocess_start = std::chrono::steady_clock::now();
- int end_img_no = std::min(img_num, beg_img_no + this->rec_batch_num_);
- int batch_num = end_img_no - beg_img_no;
- int imgH = this->rec_image_shape_[1];
- int imgW = this->rec_image_shape_[2];
- float max_wh_ratio = imgW * 1.0 / imgH;
- for (int ino = beg_img_no; ino < end_img_no; ino++) {
- int h = img_list[indices[ino]].rows;
- int w = img_list[indices[ino]].cols;
- float wh_ratio = w * 1.0 / h;
- max_wh_ratio = std::max(max_wh_ratio, wh_ratio);
- }
- int batch_width = imgW;
- std::vector<cv::Mat> norm_img_batch;
- for (int ino = beg_img_no; ino < end_img_no; ino++) {
- cv::Mat srcimg;
- img_list[indices[ino]].copyTo(srcimg);
- cv::Mat resize_img;
- this->resize_op_.Run(srcimg, resize_img, max_wh_ratio,
- this->use_tensorrt_, this->rec_image_shape_);
- this->normalize_op_.Run(&resize_img, this->mean_, this->scale_,
- this->is_scale_);
- norm_img_batch.push_back(resize_img);
- batch_width = std::max(resize_img.cols, batch_width);
- }
- std::vector<float> input(batch_num * 3 * imgH * batch_width, 0.0f);
- this->permute_op_.Run(norm_img_batch, input.data());
- auto preprocess_end = std::chrono::steady_clock::now();
- preprocess_diff += preprocess_end - preprocess_start;
- // Inference.
- auto input_names = this->predictor_->GetInputNames();
- auto input_t = this->predictor_->GetInputHandle(input_names[0]);
- input_t->Reshape({batch_num, 3, imgH, batch_width});
- auto inference_start = std::chrono::steady_clock::now();
- input_t->CopyFromCpu(input.data());
- this->predictor_->Run();
- std::vector<float> predict_batch;
- auto output_names = this->predictor_->GetOutputNames();
- auto output_t = this->predictor_->GetOutputHandle(output_names[0]);
- auto predict_shape = output_t->shape();
- int out_num = std::accumulate(predict_shape.begin(), predict_shape.end(), 1,
- std::multiplies<int>());
- predict_batch.resize(out_num);
- // predict_batch is the result of Last FC with softmax
- output_t->CopyToCpu(predict_batch.data());
- auto inference_end = std::chrono::steady_clock::now();
- inference_diff += inference_end - inference_start;
- // ctc decode
- auto postprocess_start = std::chrono::steady_clock::now();
- for (int m = 0; m < predict_shape[0]; m++) {
- std::string str_res;
- int argmax_idx;
- int last_index = 0;
- float score = 0.f;
- int count = 0;
- float max_value = 0.0f;
- for (int n = 0; n < predict_shape[1]; n++) {
- // get idx
- argmax_idx = int(Utility::argmax(
- &predict_batch[(m * predict_shape[1] + n) * predict_shape[2]],
- &predict_batch[(m * predict_shape[1] + n + 1) * predict_shape[2]]));
- // get score
- max_value = float(*std::max_element(
- &predict_batch[(m * predict_shape[1] + n) * predict_shape[2]],
- &predict_batch[(m * predict_shape[1] + n + 1) * predict_shape[2]]));
- if (argmax_idx > 0 && (!(n > 0 && argmax_idx == last_index))) {
- score += max_value;
- count += 1;
- str_res += label_list_[argmax_idx];
- }
- last_index = argmax_idx;
- }
- score /= count;
- if (std::isnan(score)) {
- continue;
- }
- rec_texts[indices[beg_img_no + m]] = str_res;
- rec_text_scores[indices[beg_img_no + m]] = score;
- }
- auto postprocess_end = std::chrono::steady_clock::now();
- postprocess_diff += postprocess_end - postprocess_start;
- }
- times.push_back(double(preprocess_diff.count() * 1000));
- times.push_back(double(inference_diff.count() * 1000));
- times.push_back(double(postprocess_diff.count() * 1000));
- }
- void CRNNRecognizer::LoadModel(const std::string &model_dir) {
- paddle_infer::Config config;
- config.SetModel(model_dir + "/inference.pdmodel",
- model_dir + "/inference.pdiparams");
- std::cout << "In PP-OCRv3, default rec_img_h is 48,"
- << "if you use other model, you should set the param rec_img_h=32"
- << std::endl;
- if (this->use_gpu_) {
- config.EnableUseGpu(this->gpu_mem_, this->gpu_id_);
- if (this->use_tensorrt_) {
- auto precision = paddle_infer::Config::Precision::kFloat32;
- if (this->precision_ == "fp16") {
- precision = paddle_infer::Config::Precision::kHalf;
- }
- if (this->precision_ == "int8") {
- precision = paddle_infer::Config::Precision::kInt8;
- }
- if (!Utility::PathExists("./trt_rec_shape.txt")) {
- config.CollectShapeRangeInfo("./trt_rec_shape.txt");
- } else {
- config.EnableTunedTensorRtDynamicShape("./trt_rec_shape.txt", true);
- }
- }
- } else {
- config.DisableGpu();
- if (this->use_mkldnn_) {
- config.EnableMKLDNN();
- // cache 10 different shapes for mkldnn to avoid memory leak
- config.SetMkldnnCacheCapacity(10);
- }
- config.SetCpuMathLibraryNumThreads(this->cpu_math_library_num_threads_);
- }
- // get pass_builder object
- auto pass_builder = config.pass_builder();
- // delete "matmul_transpose_reshape_fuse_pass"
- pass_builder->DeletePass("matmul_transpose_reshape_fuse_pass");
- config.SwitchUseFeedFetchOps(false);
- // true for multiple input
- config.SwitchSpecifyInputNames(true);
- config.SwitchIrOptim(true);
- config.EnableMemoryOptim();
- // config.DisableGlogInfo();
- this->predictor_ = paddle_infer::CreatePredictor(config);
- }
- } // namespace PaddleOCR
|