123456789101112131415161718192021222324252627282930313233343536373839404142434445464748 |
- from paddle import nn
- import paddle
- class MTB(nn.Layer):
- def __init__(self, cnn_num, in_channels):
- super(MTB, self).__init__()
- self.block = nn.Sequential()
- self.out_channels = in_channels
- self.cnn_num = cnn_num
- if self.cnn_num == 2:
- for i in range(self.cnn_num):
- self.block.add_sublayer(
- 'conv_{}'.format(i),
- nn.Conv2D(
- in_channels=in_channels
- if i == 0 else 32 * (2**(i - 1)),
- out_channels=32 * (2**i),
- kernel_size=3,
- stride=2,
- padding=1))
- self.block.add_sublayer('relu_{}'.format(i), nn.ReLU())
- self.block.add_sublayer('bn_{}'.format(i),
- nn.BatchNorm2D(32 * (2**i)))
- def forward(self, images):
- x = self.block(images)
- if self.cnn_num == 2:
-
- x = paddle.transpose(x, [0, 3, 2, 1])
- x_shape = paddle.shape(x)
- x = paddle.reshape(
- x, [x_shape[0], x_shape[1], x_shape[2] * x_shape[3]])
- return x
|