12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273 |
- from __future__ import absolute_import
- from __future__ import division
- from __future__ import print_function
- import math
- import paddle
- from paddle import ParamAttr
- import paddle.nn as nn
- import paddle.nn.functional as F
- from ppocr.modeling.necks.rnn import Im2Seq, EncoderWithRNN, EncoderWithFC, SequenceEncoder, EncoderWithSVTR
- from .rec_ctc_head import CTCHead
- from .rec_sar_head import SARHead
- class MultiHead(nn.Layer):
- def __init__(self, in_channels, out_channels_list, **kwargs):
- super().__init__()
- self.head_list = kwargs.pop('head_list')
- self.gtc_head = 'sar'
- assert len(self.head_list) >= 2
- for idx, head_name in enumerate(self.head_list):
- name = list(head_name)[0]
- if name == 'SARHead':
-
- sar_args = self.head_list[idx][name]
- self.sar_head = eval(name)(in_channels=in_channels, \
- out_channels=out_channels_list['SARLabelDecode'], **sar_args)
- elif name == 'CTCHead':
-
- self.encoder_reshape = Im2Seq(in_channels)
- neck_args = self.head_list[idx][name]['Neck']
- encoder_type = neck_args.pop('name')
- self.encoder = encoder_type
- self.ctc_encoder = SequenceEncoder(in_channels=in_channels, \
- encoder_type=encoder_type, **neck_args)
-
- head_args = self.head_list[idx][name]['Head']
- self.ctc_head = eval(name)(in_channels=self.ctc_encoder.out_channels, \
- out_channels=out_channels_list['CTCLabelDecode'], **head_args)
- else:
- raise NotImplementedError(
- '{} is not supported in MultiHead yet'.format(name))
- def forward(self, x, targets=None):
- ctc_encoder = self.ctc_encoder(x)
- ctc_out = self.ctc_head(ctc_encoder, targets)
- head_out = dict()
- head_out['ctc'] = ctc_out
- head_out['ctc_neck'] = ctc_encoder
-
- if not self.training:
- return ctc_out
- if self.gtc_head == 'sar':
- sar_out = self.sar_head(x, targets[1:])
- head_out['sar'] = sar_out
- return head_out
- else:
- return head_out
|