123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143 |
- """
- This code is refer from:
- https://github.com/ayumiymk/aster.pytorch/blob/master/lib/models/resnet_aster.py
- """
- import paddle
- import paddle.nn as nn
- import sys
- import math
- def conv3x3(in_planes, out_planes, stride=1):
- """3x3 convolution with padding"""
- return nn.Conv2D(
- in_planes,
- out_planes,
- kernel_size=3,
- stride=stride,
- padding=1,
- bias_attr=False)
- def conv1x1(in_planes, out_planes, stride=1):
- """1x1 convolution"""
- return nn.Conv2D(
- in_planes, out_planes, kernel_size=1, stride=stride, bias_attr=False)
- def get_sinusoid_encoding(n_position, feat_dim, wave_length=10000):
-
- positions = paddle.arange(0, n_position)
-
- dim_range = paddle.arange(0, feat_dim)
- dim_range = paddle.pow(wave_length, 2 * (dim_range // 2) / feat_dim)
-
- angles = paddle.unsqueeze(
- positions, axis=1) / paddle.unsqueeze(
- dim_range, axis=0)
- angles = paddle.cast(angles, "float32")
- angles[:, 0::2] = paddle.sin(angles[:, 0::2])
- angles[:, 1::2] = paddle.cos(angles[:, 1::2])
- return angles
- class AsterBlock(nn.Layer):
- def __init__(self, inplanes, planes, stride=1, downsample=None):
- super(AsterBlock, self).__init__()
- self.conv1 = conv1x1(inplanes, planes, stride)
- self.bn1 = nn.BatchNorm2D(planes)
- self.relu = nn.ReLU()
- self.conv2 = conv3x3(planes, planes)
- self.bn2 = nn.BatchNorm2D(planes)
- self.downsample = downsample
- self.stride = stride
- def forward(self, x):
- residual = x
- out = self.conv1(x)
- out = self.bn1(out)
- out = self.relu(out)
- out = self.conv2(out)
- out = self.bn2(out)
- if self.downsample is not None:
- residual = self.downsample(x)
- out += residual
- out = self.relu(out)
- return out
- class ResNet_ASTER(nn.Layer):
- """For aster or crnn"""
- def __init__(self, with_lstm=True, n_group=1, in_channels=3):
- super(ResNet_ASTER, self).__init__()
- self.with_lstm = with_lstm
- self.n_group = n_group
- self.layer0 = nn.Sequential(
- nn.Conv2D(
- in_channels,
- 32,
- kernel_size=(3, 3),
- stride=1,
- padding=1,
- bias_attr=False),
- nn.BatchNorm2D(32),
- nn.ReLU())
- self.inplanes = 32
- self.layer1 = self._make_layer(32, 3, [2, 2])
- self.layer2 = self._make_layer(64, 4, [2, 2])
- self.layer3 = self._make_layer(128, 6, [2, 1])
- self.layer4 = self._make_layer(256, 6, [2, 1])
- self.layer5 = self._make_layer(512, 3, [2, 1])
- if with_lstm:
- self.rnn = nn.LSTM(512, 256, direction="bidirect", num_layers=2)
- self.out_channels = 2 * 256
- else:
- self.out_channels = 512
- def _make_layer(self, planes, blocks, stride):
- downsample = None
- if stride != [1, 1] or self.inplanes != planes:
- downsample = nn.Sequential(
- conv1x1(self.inplanes, planes, stride), nn.BatchNorm2D(planes))
- layers = []
- layers.append(AsterBlock(self.inplanes, planes, stride, downsample))
- self.inplanes = planes
- for _ in range(1, blocks):
- layers.append(AsterBlock(self.inplanes, planes))
- return nn.Sequential(*layers)
- def forward(self, x):
- x0 = self.layer0(x)
- x1 = self.layer1(x0)
- x2 = self.layer2(x1)
- x3 = self.layer3(x2)
- x4 = self.layer4(x3)
- x5 = self.layer5(x4)
- cnn_feat = x5.squeeze(2)
- cnn_feat = paddle.transpose(cnn_feat, perm=[0, 2, 1])
- if self.with_lstm:
- rnn_feat, _ = self.rnn(cnn_feat)
- return rnn_feat
- else:
- return cnn_feat
|