12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152 |
- from __future__ import absolute_import
- from __future__ import division
- from __future__ import print_function
- import paddle
- import paddle.nn as nn
- class ACELoss(nn.Layer):
- def __init__(self, **kwargs):
- super().__init__()
- self.loss_func = nn.CrossEntropyLoss(
- weight=None,
- ignore_index=0,
- reduction='none',
- soft_label=True,
- axis=-1)
- def __call__(self, predicts, batch):
- if isinstance(predicts, (list, tuple)):
- predicts = predicts[-1]
- B, N = predicts.shape[:2]
- div = paddle.to_tensor([N]).astype('float32')
- predicts = nn.functional.softmax(predicts, axis=-1)
- aggregation_preds = paddle.sum(predicts, axis=1)
- aggregation_preds = paddle.divide(aggregation_preds, div)
- length = batch[2].astype("float32")
- batch = batch[3].astype("float32")
- batch[:, 0] = paddle.subtract(div, length)
- batch = paddle.divide(batch, div)
- loss = self.loss_func(aggregation_preds, batch)
- return {"loss_ace": loss}
|