123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100 |
- # Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- from __future__ import absolute_import
- from __future__ import division
- from __future__ import print_function
- import numpy as np
- import os
- import sys
- import json
- from PIL import Image
- import cv2
- __dir__ = os.path.dirname(os.path.abspath(__file__))
- sys.path.insert(0, __dir__)
- sys.path.insert(0, os.path.abspath(os.path.join(__dir__, '..')))
- os.environ["FLAGS_allocator_strategy"] = 'auto_growth'
- import paddle
- from ppocr.data import create_operators, transform
- from ppocr.modeling.architectures import build_model
- from ppocr.postprocess import build_post_process
- from ppocr.utils.save_load import load_model
- from ppocr.utils.utility import get_image_file_list
- import tools.program as program
- def main():
- global_config = config['Global']
- # build post process
- post_process_class = build_post_process(config['PostProcess'],
- global_config)
- # sr transform
- config['Architecture']["Transform"]['infer_mode'] = True
- model = build_model(config['Architecture'])
- load_model(config, model)
- # create data ops
- transforms = []
- for op in config['Eval']['dataset']['transforms']:
- op_name = list(op)[0]
- if 'Label' in op_name:
- continue
- elif op_name in ['SRResize']:
- op[op_name]['infer_mode'] = True
- elif op_name == 'KeepKeys':
- op[op_name]['keep_keys'] = ['img_lr']
- transforms.append(op)
- global_config['infer_mode'] = True
- ops = create_operators(transforms, global_config)
- save_visual_path = config['Global'].get('save_visual', "infer_result/")
- if not os.path.exists(os.path.dirname(save_visual_path)):
- os.makedirs(os.path.dirname(save_visual_path))
- model.eval()
- for file in get_image_file_list(config['Global']['infer_img']):
- logger.info("infer_img: {}".format(file))
- img = Image.open(file).convert("RGB")
- data = {'image_lr': img}
- batch = transform(data, ops)
- images = np.expand_dims(batch[0], axis=0)
- images = paddle.to_tensor(images)
- preds = model(images)
- sr_img = preds["sr_img"][0]
- lr_img = preds["lr_img"][0]
- fm_sr = (sr_img.numpy() * 255).transpose(1, 2, 0).astype(np.uint8)
- fm_lr = (lr_img.numpy() * 255).transpose(1, 2, 0).astype(np.uint8)
- img_name_pure = os.path.split(file)[-1]
- cv2.imwrite("{}/sr_{}".format(save_visual_path, img_name_pure),
- fm_sr[:, :, ::-1])
- logger.info("The visualized image saved in infer_result/sr_{}".format(
- img_name_pure))
- logger.info("success!")
- if __name__ == '__main__':
- config, device, logger, vdl_writer = program.preprocess()
- main()
|