123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230 |
- # Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import os
- import sys
- __dir__ = os.path.dirname(os.path.abspath(__file__))
- sys.path.append(__dir__)
- sys.path.insert(0, os.path.abspath(os.path.join(__dir__, '..')))
- sys.path.insert(0, os.path.abspath(os.path.join(__dir__, '../..')))
- os.environ["FLAGS_allocator_strategy"] = 'auto_growth'
- import cv2
- import copy
- import logging
- import numpy as np
- import time
- import tools.infer.predict_rec as predict_rec
- import tools.infer.predict_det as predict_det
- import tools.infer.utility as utility
- from tools.infer.predict_system import sorted_boxes
- from ppocr.utils.utility import get_image_file_list, check_and_read
- from ppocr.utils.logging import get_logger
- from ppstructure.table.matcher import TableMatch
- from ppstructure.table.table_master_match import TableMasterMatcher
- from ppstructure.utility import parse_args
- import ppstructure.table.predict_structure as predict_strture
- logger = get_logger()
- def expand(pix, det_box, shape):
- x0, y0, x1, y1 = det_box
- # print(shape)
- h, w, c = shape
- tmp_x0 = x0 - pix
- tmp_x1 = x1 + pix
- tmp_y0 = y0 - pix
- tmp_y1 = y1 + pix
- x0_ = tmp_x0 if tmp_x0 >= 0 else 0
- x1_ = tmp_x1 if tmp_x1 <= w else w
- y0_ = tmp_y0 if tmp_y0 >= 0 else 0
- y1_ = tmp_y1 if tmp_y1 <= h else h
- return x0_, y0_, x1_, y1_
- class TableSystem(object):
- def __init__(self, args, text_detector=None, text_recognizer=None):
- self.args = args
- if not args.show_log:
- logger.setLevel(logging.INFO)
- benchmark_tmp = False
- if args.benchmark:
- benchmark_tmp = args.benchmark
- args.benchmark = False
- self.text_detector = predict_det.TextDetector(copy.deepcopy(
- args)) if text_detector is None else text_detector
- self.text_recognizer = predict_rec.TextRecognizer(copy.deepcopy(
- args)) if text_recognizer is None else text_recognizer
- if benchmark_tmp:
- args.benchmark = True
- self.table_structurer = predict_strture.TableStructurer(args)
- if args.table_algorithm in ['TableMaster']:
- self.match = TableMasterMatcher()
- else:
- self.match = TableMatch(filter_ocr_result=True)
- self.predictor, self.input_tensor, self.output_tensors, self.config = utility.create_predictor(
- args, 'table', logger)
- def __call__(self, img, return_ocr_result_in_table=False):
- result = dict()
- time_dict = {'det': 0, 'rec': 0, 'table': 0, 'all': 0, 'match': 0}
- start = time.time()
- structure_res, elapse = self._structure(copy.deepcopy(img))
- result['cell_bbox'] = structure_res[1].tolist()
- time_dict['table'] = elapse
- dt_boxes, rec_res, det_elapse, rec_elapse = self._ocr(
- copy.deepcopy(img))
- time_dict['det'] = det_elapse
- time_dict['rec'] = rec_elapse
- if return_ocr_result_in_table:
- result['boxes'] = dt_boxes #[x.tolist() for x in dt_boxes]
- result['rec_res'] = rec_res
- tic = time.time()
- pred_html = self.match(structure_res, dt_boxes, rec_res)
- toc = time.time()
- time_dict['match'] = toc - tic
- result['html'] = pred_html
- end = time.time()
- time_dict['all'] = end - start
- return result, time_dict
- def _structure(self, img):
- structure_res, elapse = self.table_structurer(copy.deepcopy(img))
- return structure_res, elapse
- def _ocr(self, img):
- h, w = img.shape[:2]
- dt_boxes, det_elapse = self.text_detector(copy.deepcopy(img))
- dt_boxes = sorted_boxes(dt_boxes)
- r_boxes = []
- for box in dt_boxes:
- x_min = max(0, box[:, 0].min() - 1)
- x_max = min(w, box[:, 0].max() + 1)
- y_min = max(0, box[:, 1].min() - 1)
- y_max = min(h, box[:, 1].max() + 1)
- box = [x_min, y_min, x_max, y_max]
- r_boxes.append(box)
- dt_boxes = np.array(r_boxes)
- logger.debug("dt_boxes num : {}, elapse : {}".format(
- len(dt_boxes), det_elapse))
- if dt_boxes is None:
- return None, None
- img_crop_list = []
- for i in range(len(dt_boxes)):
- det_box = dt_boxes[i]
- x0, y0, x1, y1 = expand(2, det_box, img.shape)
- text_rect = img[int(y0):int(y1), int(x0):int(x1), :]
- img_crop_list.append(text_rect)
- rec_res, rec_elapse = self.text_recognizer(img_crop_list)
- logger.debug("rec_res num : {}, elapse : {}".format(
- len(rec_res), rec_elapse))
- return dt_boxes, rec_res, det_elapse, rec_elapse
- def to_excel(html_table, excel_path):
- from tablepyxl import tablepyxl
- tablepyxl.document_to_xl(html_table, excel_path)
- def main(args):
- image_file_list = get_image_file_list(args.image_dir)
- image_file_list = image_file_list[args.process_id::args.total_process_num]
- os.makedirs(args.output, exist_ok=True)
- table_sys = TableSystem(args)
- img_num = len(image_file_list)
- f_html = open(
- os.path.join(args.output, 'show.html'), mode='w', encoding='utf-8')
- f_html.write('<html>\n<body>\n')
- f_html.write('<table border="1">\n')
- f_html.write(
- "<meta http-equiv=\"Content-Type\" content=\"text/html; charset=utf-8\" />"
- )
- f_html.write("<tr>\n")
- f_html.write('<td>img name\n')
- f_html.write('<td>ori image</td>')
- f_html.write('<td>table html</td>')
- f_html.write('<td>cell box</td>')
- f_html.write("</tr>\n")
- for i, image_file in enumerate(image_file_list):
- logger.info("[{}/{}] {}".format(i, img_num, image_file))
- img, flag, _ = check_and_read(image_file)
- excel_path = os.path.join(
- args.output, os.path.basename(image_file).split('.')[0] + '.xlsx')
- if not flag:
- img = cv2.imread(image_file)
- if img is None:
- logger.error("error in loading image:{}".format(image_file))
- continue
- starttime = time.time()
- pred_res, _ = table_sys(img)
- pred_html = pred_res['html']
- logger.info(pred_html)
- to_excel(pred_html, excel_path)
- logger.info('excel saved to {}'.format(excel_path))
- elapse = time.time() - starttime
- logger.info("Predict time : {:.3f}s".format(elapse))
- if len(pred_res['cell_bbox']) > 0 and len(pred_res['cell_bbox'][
- 0]) == 4:
- img = predict_strture.draw_rectangle(image_file,
- pred_res['cell_bbox'])
- else:
- img = utility.draw_boxes(img, pred_res['cell_bbox'])
- img_save_path = os.path.join(args.output, os.path.basename(image_file))
- cv2.imwrite(img_save_path, img)
- f_html.write("<tr>\n")
- f_html.write(f'<td> {os.path.basename(image_file)} <br/>\n')
- f_html.write(f'<td><img src="{image_file}" width=640></td>\n')
- f_html.write('<td><table border="1">' + pred_html.replace(
- '<html><body><table>', '').replace('</table></body></html>', '') +
- '</table></td>\n')
- f_html.write(
- f'<td><img src="{os.path.basename(image_file)}" width=640></td>\n')
- f_html.write("</tr>\n")
- f_html.write("</table>\n")
- f_html.close()
- if args.benchmark:
- table_sys.table_structurer.autolog.report()
- if __name__ == "__main__":
- args = parse_args()
- if args.use_mp:
- import subprocess
- p_list = []
- total_process_num = args.total_process_num
- for process_id in range(total_process_num):
- cmd = [sys.executable, "-u"] + sys.argv + [
- "--process_id={}".format(process_id),
- "--use_mp={}".format(False)
- ]
- p = subprocess.Popen(cmd, stdout=sys.stdout, stderr=sys.stdout)
- p_list.append(p)
- for p in p_list:
- p.wait()
- else:
- main(args)
|