123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202 |
- # Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import os
- import sys
- __dir__ = os.path.dirname(os.path.abspath(__file__))
- sys.path.append(__dir__)
- sys.path.insert(0, os.path.abspath(os.path.join(__dir__, '../..')))
- os.environ["FLAGS_allocator_strategy"] = 'auto_growth'
- import cv2
- import numpy as np
- import time
- import json
- import tools.infer.utility as utility
- from ppocr.data import create_operators, transform
- from ppocr.postprocess import build_post_process
- from ppocr.utils.logging import get_logger
- from ppocr.utils.utility import get_image_file_list, check_and_read
- from ppocr.utils.visual import draw_rectangle
- from ppstructure.utility import parse_args
- logger = get_logger()
- def build_pre_process_list(args):
- resize_op = {'ResizeTableImage': {'max_len': args.table_max_len, }}
- pad_op = {
- 'PaddingTableImage': {
- 'size': [args.table_max_len, args.table_max_len]
- }
- }
- normalize_op = {
- 'NormalizeImage': {
- 'std': [0.229, 0.224, 0.225] if
- args.table_algorithm not in ['TableMaster'] else [0.5, 0.5, 0.5],
- 'mean': [0.485, 0.456, 0.406] if
- args.table_algorithm not in ['TableMaster'] else [0.5, 0.5, 0.5],
- 'scale': '1./255.',
- 'order': 'hwc'
- }
- }
- to_chw_op = {'ToCHWImage': None}
- keep_keys_op = {'KeepKeys': {'keep_keys': ['image', 'shape']}}
- if args.table_algorithm not in ['TableMaster']:
- pre_process_list = [
- resize_op, normalize_op, pad_op, to_chw_op, keep_keys_op
- ]
- else:
- pre_process_list = [
- resize_op, pad_op, normalize_op, to_chw_op, keep_keys_op
- ]
- return pre_process_list
- class TableStructurer(object):
- def __init__(self, args):
- self.args = args
- self.use_onnx = args.use_onnx
- pre_process_list = build_pre_process_list(args)
- if args.table_algorithm not in ['TableMaster']:
- postprocess_params = {
- 'name': 'TableLabelDecode',
- "character_dict_path": args.table_char_dict_path,
- 'merge_no_span_structure': args.merge_no_span_structure
- }
- else:
- postprocess_params = {
- 'name': 'TableMasterLabelDecode',
- "character_dict_path": args.table_char_dict_path,
- 'box_shape': 'pad',
- 'merge_no_span_structure': args.merge_no_span_structure
- }
- self.preprocess_op = create_operators(pre_process_list)
- self.postprocess_op = build_post_process(postprocess_params)
- self.predictor, self.input_tensor, self.output_tensors, self.config = \
- utility.create_predictor(args, 'table', logger)
- if args.benchmark:
- import auto_log
- pid = os.getpid()
- gpu_id = utility.get_infer_gpuid()
- self.autolog = auto_log.AutoLogger(
- model_name="table",
- model_precision=args.precision,
- batch_size=1,
- data_shape="dynamic",
- save_path=None, #args.save_log_path,
- inference_config=self.config,
- pids=pid,
- process_name=None,
- gpu_ids=gpu_id if args.use_gpu else None,
- time_keys=[
- 'preprocess_time', 'inference_time', 'postprocess_time'
- ],
- warmup=0,
- logger=logger)
- def __call__(self, img):
- starttime = time.time()
- if self.args.benchmark:
- self.autolog.times.start()
- ori_im = img.copy()
- data = {'image': img}
- data = transform(data, self.preprocess_op)
- img = data[0]
- if img is None:
- return None, 0
- img = np.expand_dims(img, axis=0)
- img = img.copy()
- if self.args.benchmark:
- self.autolog.times.stamp()
- if self.use_onnx:
- input_dict = {}
- input_dict[self.input_tensor.name] = img
- outputs = self.predictor.run(self.output_tensors, input_dict)
- else:
- self.input_tensor.copy_from_cpu(img)
- self.predictor.run()
- outputs = []
- for output_tensor in self.output_tensors:
- output = output_tensor.copy_to_cpu()
- outputs.append(output)
- if self.args.benchmark:
- self.autolog.times.stamp()
- preds = {}
- preds['structure_probs'] = outputs[1]
- preds['loc_preds'] = outputs[0]
- shape_list = np.expand_dims(data[-1], axis=0)
- post_result = self.postprocess_op(preds, [shape_list])
- structure_str_list = post_result['structure_batch_list'][0]
- bbox_list = post_result['bbox_batch_list'][0]
- structure_str_list = structure_str_list[0]
- structure_str_list = [
- '<html>', '<body>', '<table>'
- ] + structure_str_list + ['</table>', '</body>', '</html>']
- elapse = time.time() - starttime
- if self.args.benchmark:
- self.autolog.times.end(stamp=True)
- return (structure_str_list, bbox_list), elapse
- def main(args):
- image_file_list = get_image_file_list(args.image_dir)
- table_structurer = TableStructurer(args)
- count = 0
- total_time = 0
- os.makedirs(args.output, exist_ok=True)
- with open(
- os.path.join(args.output, 'infer.txt'), mode='w',
- encoding='utf-8') as f_w:
- for image_file in image_file_list:
- img, flag, _ = check_and_read(image_file)
- if not flag:
- img = cv2.imread(image_file)
- if img is None:
- logger.info("error in loading image:{}".format(image_file))
- continue
- structure_res, elapse = table_structurer(img)
- structure_str_list, bbox_list = structure_res
- bbox_list_str = json.dumps(bbox_list.tolist())
- logger.info("result: {}, {}".format(structure_str_list,
- bbox_list_str))
- f_w.write("result: {}, {}\n".format(structure_str_list,
- bbox_list_str))
- if len(bbox_list) > 0 and len(bbox_list[0]) == 4:
- img = draw_rectangle(image_file, bbox_list)
- else:
- img = utility.draw_boxes(img, bbox_list)
- img_save_path = os.path.join(args.output,
- os.path.basename(image_file))
- cv2.imwrite(img_save_path, img)
- logger.info("save vis result to {}".format(img_save_path))
- if count > 0:
- total_time += elapse
- count += 1
- logger.info("Predict time of {}: {}".format(image_file, elapse))
- if args.benchmark:
- table_structurer.autolog.report()
- if __name__ == "__main__":
- main(parse_args())
|