123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131 |
- # Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import os
- import sys
- __dir__ = os.path.dirname(os.path.abspath(__file__))
- sys.path.append(__dir__)
- sys.path.insert(0, os.path.abspath(os.path.join(__dir__, '../..')))
- os.environ["FLAGS_allocator_strategy"] = 'auto_growth'
- import cv2
- import numpy as np
- import time
- import tools.infer.utility as utility
- from ppocr.data import create_operators, transform
- from ppocr.postprocess import build_post_process
- from ppocr.utils.logging import get_logger
- from ppocr.utils.utility import get_image_file_list, check_and_read
- from ppstructure.utility import parse_args
- from picodet_postprocess import PicoDetPostProcess
- logger = get_logger()
- class LayoutPredictor(object):
- def __init__(self, args):
- pre_process_list = [{
- 'Resize': {
- 'size': [800, 608]
- }
- }, {
- 'NormalizeImage': {
- 'std': [0.229, 0.224, 0.225],
- 'mean': [0.485, 0.456, 0.406],
- 'scale': '1./255.',
- 'order': 'hwc'
- }
- }, {
- 'ToCHWImage': None
- }, {
- 'KeepKeys': {
- 'keep_keys': ['image']
- }
- }]
- postprocess_params = {
- 'name': 'PicoDetPostProcess',
- "layout_dict_path": args.layout_dict_path,
- "score_threshold": args.layout_score_threshold,
- "nms_threshold": args.layout_nms_threshold,
- }
- self.preprocess_op = create_operators(pre_process_list)
- self.postprocess_op = build_post_process(postprocess_params)
- self.predictor, self.input_tensor, self.output_tensors, self.config = \
- utility.create_predictor(args, 'layout', logger)
- def __call__(self, img):
- ori_im = img.copy()
- data = {'image': img}
- data = transform(data, self.preprocess_op)
- img = data[0]
- if img is None:
- return None, 0
- img = np.expand_dims(img, axis=0)
- img = img.copy()
- preds, elapse = 0, 1
- starttime = time.time()
- self.input_tensor.copy_from_cpu(img)
- self.predictor.run()
- np_score_list, np_boxes_list = [], []
- output_names = self.predictor.get_output_names()
- num_outs = int(len(output_names) / 2)
- for out_idx in range(num_outs):
- np_score_list.append(
- self.predictor.get_output_handle(output_names[out_idx])
- .copy_to_cpu())
- np_boxes_list.append(
- self.predictor.get_output_handle(output_names[
- out_idx + num_outs]).copy_to_cpu())
- preds = dict(boxes=np_score_list, boxes_num=np_boxes_list)
- post_preds = self.postprocess_op(ori_im, img, preds)
- elapse = time.time() - starttime
- return post_preds, elapse
- def main(args):
- image_file_list = get_image_file_list(args.image_dir)
- layout_predictor = LayoutPredictor(args)
- count = 0
- total_time = 0
- repeats = 50
- for image_file in image_file_list:
- img, flag, _ = check_and_read(image_file)
- if not flag:
- img = cv2.imread(image_file)
- if img is None:
- logger.info("error in loading image:{}".format(image_file))
- continue
- layout_res, elapse = layout_predictor(img)
- logger.info("result: {}".format(layout_res))
- if count > 0:
- total_time += elapse
- count += 1
- logger.info("Predict time of {}: {}".format(image_file, elapse))
- if __name__ == "__main__":
- main(parse_args())
|