123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150 |
- # Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import logging
- import os
- import imghdr
- import cv2
- import random
- import numpy as np
- import paddle
- def print_dict(d, logger, delimiter=0):
- """
- Recursively visualize a dict and
- indenting acrrording by the relationship of keys.
- """
- for k, v in sorted(d.items()):
- if isinstance(v, dict):
- logger.info("{}{} : ".format(delimiter * " ", str(k)))
- print_dict(v, logger, delimiter + 4)
- elif isinstance(v, list) and len(v) >= 1 and isinstance(v[0], dict):
- logger.info("{}{} : ".format(delimiter * " ", str(k)))
- for value in v:
- print_dict(value, logger, delimiter + 4)
- else:
- logger.info("{}{} : {}".format(delimiter * " ", k, v))
- def get_check_global_params(mode):
- check_params = ['use_gpu', 'max_text_length', 'image_shape', \
- 'image_shape', 'character_type', 'loss_type']
- if mode == "train_eval":
- check_params = check_params + [ \
- 'train_batch_size_per_card', 'test_batch_size_per_card']
- elif mode == "test":
- check_params = check_params + ['test_batch_size_per_card']
- return check_params
- def _check_image_file(path):
- img_end = {'jpg', 'bmp', 'png', 'jpeg', 'rgb', 'tif', 'tiff', 'gif', 'pdf'}
- return any([path.lower().endswith(e) for e in img_end])
- def get_image_file_list(img_file):
- imgs_lists = []
- if img_file is None or not os.path.exists(img_file):
- raise Exception("not found any img file in {}".format(img_file))
- img_end = {'jpg', 'bmp', 'png', 'jpeg', 'rgb', 'tif', 'tiff', 'gif', 'pdf'}
- if os.path.isfile(img_file) and _check_image_file(img_file):
- imgs_lists.append(img_file)
- elif os.path.isdir(img_file):
- for single_file in os.listdir(img_file):
- file_path = os.path.join(img_file, single_file)
- if os.path.isfile(file_path) and _check_image_file(file_path):
- imgs_lists.append(file_path)
- if len(imgs_lists) == 0:
- raise Exception("not found any img file in {}".format(img_file))
- imgs_lists = sorted(imgs_lists)
- return imgs_lists
- def check_and_read(img_path):
- if os.path.basename(img_path)[-3:] in ['gif', 'GIF']:
- gif = cv2.VideoCapture(img_path)
- ret, frame = gif.read()
- if not ret:
- logger = logging.getLogger('ppocr')
- logger.info("Cannot read {}. This gif image maybe corrupted.")
- return None, False
- if len(frame.shape) == 2 or frame.shape[-1] == 1:
- frame = cv2.cvtColor(frame, cv2.COLOR_GRAY2RGB)
- imgvalue = frame[:, :, ::-1]
- return imgvalue, True, False
- elif os.path.basename(img_path)[-3:] in ['pdf']:
- import fitz
- from PIL import Image
- imgs = []
- with fitz.open(img_path) as pdf:
- for pg in range(0, pdf.pageCount):
- page = pdf[pg]
- mat = fitz.Matrix(2, 2)
- pm = page.getPixmap(matrix=mat, alpha=False)
- # if width or height > 2000 pixels, don't enlarge the image
- if pm.width > 2000 or pm.height > 2000:
- pm = page.getPixmap(matrix=fitz.Matrix(1, 1), alpha=False)
- img = Image.frombytes("RGB", [pm.width, pm.height], pm.samples)
- img = cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR)
- imgs.append(img)
- return imgs, False, True
- return None, False, False
- def load_vqa_bio_label_maps(label_map_path):
- with open(label_map_path, "r", encoding='utf-8') as fin:
- lines = fin.readlines()
- old_lines = [line.strip() for line in lines]
- lines = ["O"]
- for line in old_lines:
- # "O" has already been in lines
- if line.upper() in ["OTHER", "OTHERS", "IGNORE"]:
- continue
- lines.append(line)
- labels = ["O"]
- for line in lines[1:]:
- labels.append("B-" + line)
- labels.append("I-" + line)
- label2id_map = {label.upper(): idx for idx, label in enumerate(labels)}
- id2label_map = {idx: label.upper() for idx, label in enumerate(labels)}
- return label2id_map, id2label_map
- def set_seed(seed=1024):
- random.seed(seed)
- np.random.seed(seed)
- paddle.seed(seed)
- class AverageMeter:
- def __init__(self):
- self.reset()
- def reset(self):
- """reset"""
- self.val = 0
- self.avg = 0
- self.sum = 0
- self.count = 0
- def update(self, val, n=1):
- """update"""
- self.val = val
- self.sum += val * n
- self.count += n
- self.avg = self.sum / self.count
|