123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110 |
- # copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- from __future__ import absolute_import
- from __future__ import division
- from __future__ import print_function
- import paddle
- from paddle import nn
- import paddle.nn.functional as F
- from paddle import ParamAttr
- class TableFPN(nn.Layer):
- def __init__(self, in_channels, out_channels, **kwargs):
- super(TableFPN, self).__init__()
- self.out_channels = 512
- weight_attr = paddle.nn.initializer.KaimingUniform()
- self.in2_conv = nn.Conv2D(
- in_channels=in_channels[0],
- out_channels=self.out_channels,
- kernel_size=1,
- weight_attr=ParamAttr(initializer=weight_attr),
- bias_attr=False)
- self.in3_conv = nn.Conv2D(
- in_channels=in_channels[1],
- out_channels=self.out_channels,
- kernel_size=1,
- stride = 1,
- weight_attr=ParamAttr(initializer=weight_attr),
- bias_attr=False)
- self.in4_conv = nn.Conv2D(
- in_channels=in_channels[2],
- out_channels=self.out_channels,
- kernel_size=1,
- weight_attr=ParamAttr(initializer=weight_attr),
- bias_attr=False)
- self.in5_conv = nn.Conv2D(
- in_channels=in_channels[3],
- out_channels=self.out_channels,
- kernel_size=1,
- weight_attr=ParamAttr(initializer=weight_attr),
- bias_attr=False)
- self.p5_conv = nn.Conv2D(
- in_channels=self.out_channels,
- out_channels=self.out_channels // 4,
- kernel_size=3,
- padding=1,
- weight_attr=ParamAttr(initializer=weight_attr),
- bias_attr=False)
- self.p4_conv = nn.Conv2D(
- in_channels=self.out_channels,
- out_channels=self.out_channels // 4,
- kernel_size=3,
- padding=1,
- weight_attr=ParamAttr(initializer=weight_attr),
- bias_attr=False)
- self.p3_conv = nn.Conv2D(
- in_channels=self.out_channels,
- out_channels=self.out_channels // 4,
- kernel_size=3,
- padding=1,
- weight_attr=ParamAttr(initializer=weight_attr),
- bias_attr=False)
- self.p2_conv = nn.Conv2D(
- in_channels=self.out_channels,
- out_channels=self.out_channels // 4,
- kernel_size=3,
- padding=1,
- weight_attr=ParamAttr(initializer=weight_attr),
- bias_attr=False)
- self.fuse_conv = nn.Conv2D(
- in_channels=self.out_channels * 4,
- out_channels=512,
- kernel_size=3,
- padding=1,
- weight_attr=ParamAttr(initializer=weight_attr), bias_attr=False)
- def forward(self, x):
- c2, c3, c4, c5 = x
- in5 = self.in5_conv(c5)
- in4 = self.in4_conv(c4)
- in3 = self.in3_conv(c3)
- in2 = self.in2_conv(c2)
- out4 = in4 + F.upsample(
- in5, size=in4.shape[2:4], mode="nearest", align_mode=1) # 1/16
- out3 = in3 + F.upsample(
- out4, size=in3.shape[2:4], mode="nearest", align_mode=1) # 1/8
- out2 = in2 + F.upsample(
- out3, size=in2.shape[2:4], mode="nearest", align_mode=1) # 1/4
- p4 = F.upsample(out4, size=in5.shape[2:4], mode="nearest", align_mode=1)
- p3 = F.upsample(out3, size=in5.shape[2:4], mode="nearest", align_mode=1)
- p2 = F.upsample(out2, size=in5.shape[2:4], mode="nearest", align_mode=1)
- fuse = paddle.concat([in5, p4, p3, p2], axis=1)
- fuse_conv = self.fuse_conv(fuse) * 0.005
- return [c5 + fuse_conv]
|