12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697 |
- # copyright (c) 2022 PaddlePaddle Authors. All Rights Reserve.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- """
- This code is refer from:
- https://github.com/open-mmlab/mmocr/blob/main/mmocr/models/textdet/necks/fpn_unet.py
- """
- import paddle
- import paddle.nn as nn
- import paddle.nn.functional as F
- class UpBlock(nn.Layer):
- def __init__(self, in_channels, out_channels):
- super().__init__()
- assert isinstance(in_channels, int)
- assert isinstance(out_channels, int)
- self.conv1x1 = nn.Conv2D(
- in_channels, in_channels, kernel_size=1, stride=1, padding=0)
- self.conv3x3 = nn.Conv2D(
- in_channels, out_channels, kernel_size=3, stride=1, padding=1)
- self.deconv = nn.Conv2DTranspose(
- out_channels, out_channels, kernel_size=4, stride=2, padding=1)
- def forward(self, x):
- x = F.relu(self.conv1x1(x))
- x = F.relu(self.conv3x3(x))
- x = self.deconv(x)
- return x
- class FPN_UNet(nn.Layer):
- def __init__(self, in_channels, out_channels):
- super().__init__()
- assert len(in_channels) == 4
- assert isinstance(out_channels, int)
- self.out_channels = out_channels
- blocks_out_channels = [out_channels] + [
- min(out_channels * 2**i, 256) for i in range(4)
- ]
- blocks_in_channels = [blocks_out_channels[1]] + [
- in_channels[i] + blocks_out_channels[i + 2] for i in range(3)
- ] + [in_channels[3]]
- self.up4 = nn.Conv2DTranspose(
- blocks_in_channels[4],
- blocks_out_channels[4],
- kernel_size=4,
- stride=2,
- padding=1)
- self.up_block3 = UpBlock(blocks_in_channels[3], blocks_out_channels[3])
- self.up_block2 = UpBlock(blocks_in_channels[2], blocks_out_channels[2])
- self.up_block1 = UpBlock(blocks_in_channels[1], blocks_out_channels[1])
- self.up_block0 = UpBlock(blocks_in_channels[0], blocks_out_channels[0])
- def forward(self, x):
- """
- Args:
- x (list[Tensor] | tuple[Tensor]): A list of four tensors of shape
- :math:`(N, C_i, H_i, W_i)`, representing C2, C3, C4, C5
- features respectively. :math:`C_i` should matches the number in
- ``in_channels``.
- Returns:
- Tensor: Shape :math:`(N, C, H, W)` where :math:`H=4H_0` and
- :math:`W=4W_0`.
- """
- c2, c3, c4, c5 = x
- x = F.relu(self.up4(c5))
- x = paddle.concat([x, c4], axis=1)
- x = F.relu(self.up_block3(x))
- x = paddle.concat([x, c3], axis=1)
- x = F.relu(self.up_block2(x))
- x = paddle.concat([x, c2], axis=1)
- x = F.relu(self.up_block1(x))
- x = self.up_block0(x)
- return x
|