123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138 |
- # copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- """
- This code is refer from:
- https://github.com/whai362/PSENet/blob/python3/models/neck/fpn.py
- """
- import paddle.nn as nn
- import paddle
- import math
- import paddle.nn.functional as F
- class Conv_BN_ReLU(nn.Layer):
- def __init__(self,
- in_planes,
- out_planes,
- kernel_size=1,
- stride=1,
- padding=0):
- super(Conv_BN_ReLU, self).__init__()
- self.conv = nn.Conv2D(
- in_planes,
- out_planes,
- kernel_size=kernel_size,
- stride=stride,
- padding=padding,
- bias_attr=False)
- self.bn = nn.BatchNorm2D(out_planes, momentum=0.1)
- self.relu = nn.ReLU()
- for m in self.sublayers():
- if isinstance(m, nn.Conv2D):
- n = m._kernel_size[0] * m._kernel_size[1] * m._out_channels
- m.weight = paddle.create_parameter(
- shape=m.weight.shape,
- dtype='float32',
- default_initializer=paddle.nn.initializer.Normal(
- 0, math.sqrt(2. / n)))
- elif isinstance(m, nn.BatchNorm2D):
- m.weight = paddle.create_parameter(
- shape=m.weight.shape,
- dtype='float32',
- default_initializer=paddle.nn.initializer.Constant(1.0))
- m.bias = paddle.create_parameter(
- shape=m.bias.shape,
- dtype='float32',
- default_initializer=paddle.nn.initializer.Constant(0.0))
- def forward(self, x):
- return self.relu(self.bn(self.conv(x)))
- class FPN(nn.Layer):
- def __init__(self, in_channels, out_channels):
- super(FPN, self).__init__()
- # Top layer
- self.toplayer_ = Conv_BN_ReLU(
- in_channels[3], out_channels, kernel_size=1, stride=1, padding=0)
- # Lateral layers
- self.latlayer1_ = Conv_BN_ReLU(
- in_channels[2], out_channels, kernel_size=1, stride=1, padding=0)
- self.latlayer2_ = Conv_BN_ReLU(
- in_channels[1], out_channels, kernel_size=1, stride=1, padding=0)
- self.latlayer3_ = Conv_BN_ReLU(
- in_channels[0], out_channels, kernel_size=1, stride=1, padding=0)
- # Smooth layers
- self.smooth1_ = Conv_BN_ReLU(
- out_channels, out_channels, kernel_size=3, stride=1, padding=1)
- self.smooth2_ = Conv_BN_ReLU(
- out_channels, out_channels, kernel_size=3, stride=1, padding=1)
- self.smooth3_ = Conv_BN_ReLU(
- out_channels, out_channels, kernel_size=3, stride=1, padding=1)
- self.out_channels = out_channels * 4
- for m in self.sublayers():
- if isinstance(m, nn.Conv2D):
- n = m._kernel_size[0] * m._kernel_size[1] * m._out_channels
- m.weight = paddle.create_parameter(
- shape=m.weight.shape,
- dtype='float32',
- default_initializer=paddle.nn.initializer.Normal(
- 0, math.sqrt(2. / n)))
- elif isinstance(m, nn.BatchNorm2D):
- m.weight = paddle.create_parameter(
- shape=m.weight.shape,
- dtype='float32',
- default_initializer=paddle.nn.initializer.Constant(1.0))
- m.bias = paddle.create_parameter(
- shape=m.bias.shape,
- dtype='float32',
- default_initializer=paddle.nn.initializer.Constant(0.0))
- def _upsample(self, x, scale=1):
- return F.upsample(x, scale_factor=scale, mode='bilinear')
- def _upsample_add(self, x, y, scale=1):
- return F.upsample(x, scale_factor=scale, mode='bilinear') + y
- def forward(self, x):
- f2, f3, f4, f5 = x
- p5 = self.toplayer_(f5)
- f4 = self.latlayer1_(f4)
- p4 = self._upsample_add(p5, f4, 2)
- p4 = self.smooth1_(p4)
- f3 = self.latlayer2_(f3)
- p3 = self._upsample_add(p4, f3, 2)
- p3 = self.smooth2_(p3)
- f2 = self.latlayer3_(f2)
- p2 = self._upsample_add(p3, f2, 2)
- p2 = self.smooth3_(p2)
- p3 = self._upsample(p3, 2)
- p4 = self._upsample(p4, 4)
- p5 = self._upsample(p5, 8)
- fuse = paddle.concat([p2, p3, p4, p5], axis=1)
- return fuse
|