123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280 |
- # copyright (c) 2022 PaddlePaddle Authors. All Rights Reserve.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- """
- This code is refer from:
- https://github.com/PaddlePaddle/PaddleDetection/blob/release/2.3/ppdet/modeling/necks/fpn.py
- """
- import paddle.nn as nn
- import paddle.nn.functional as F
- from paddle import ParamAttr
- from paddle.nn.initializer import XavierUniform
- from paddle.nn.initializer import Normal
- from paddle.regularizer import L2Decay
- __all__ = ['FCEFPN']
- class ConvNormLayer(nn.Layer):
- def __init__(self,
- ch_in,
- ch_out,
- filter_size,
- stride,
- groups=1,
- norm_type='bn',
- norm_decay=0.,
- norm_groups=32,
- lr_scale=1.,
- freeze_norm=False,
- initializer=Normal(
- mean=0., std=0.01)):
- super(ConvNormLayer, self).__init__()
- assert norm_type in ['bn', 'sync_bn', 'gn']
- bias_attr = False
- self.conv = nn.Conv2D(
- in_channels=ch_in,
- out_channels=ch_out,
- kernel_size=filter_size,
- stride=stride,
- padding=(filter_size - 1) // 2,
- groups=groups,
- weight_attr=ParamAttr(
- initializer=initializer, learning_rate=1.),
- bias_attr=bias_attr)
- norm_lr = 0. if freeze_norm else 1.
- param_attr = ParamAttr(
- learning_rate=norm_lr,
- regularizer=L2Decay(norm_decay) if norm_decay is not None else None)
- bias_attr = ParamAttr(
- learning_rate=norm_lr,
- regularizer=L2Decay(norm_decay) if norm_decay is not None else None)
- if norm_type == 'bn':
- self.norm = nn.BatchNorm2D(
- ch_out, weight_attr=param_attr, bias_attr=bias_attr)
- elif norm_type == 'sync_bn':
- self.norm = nn.SyncBatchNorm(
- ch_out, weight_attr=param_attr, bias_attr=bias_attr)
- elif norm_type == 'gn':
- self.norm = nn.GroupNorm(
- num_groups=norm_groups,
- num_channels=ch_out,
- weight_attr=param_attr,
- bias_attr=bias_attr)
- def forward(self, inputs):
- out = self.conv(inputs)
- out = self.norm(out)
- return out
- class FCEFPN(nn.Layer):
- """
- Feature Pyramid Network, see https://arxiv.org/abs/1612.03144
- Args:
- in_channels (list[int]): input channels of each level which can be
- derived from the output shape of backbone by from_config
- out_channels (list[int]): output channel of each level
- spatial_scales (list[float]): the spatial scales between input feature
- maps and original input image which can be derived from the output
- shape of backbone by from_config
- has_extra_convs (bool): whether to add extra conv to the last level.
- default False
- extra_stage (int): the number of extra stages added to the last level.
- default 1
- use_c5 (bool): Whether to use c5 as the input of extra stage,
- otherwise p5 is used. default True
- norm_type (string|None): The normalization type in FPN module. If
- norm_type is None, norm will not be used after conv and if
- norm_type is string, bn, gn, sync_bn are available. default None
- norm_decay (float): weight decay for normalization layer weights.
- default 0.
- freeze_norm (bool): whether to freeze normalization layer.
- default False
- relu_before_extra_convs (bool): whether to add relu before extra convs.
- default False
-
- """
- def __init__(self,
- in_channels,
- out_channels,
- spatial_scales=[0.25, 0.125, 0.0625, 0.03125],
- has_extra_convs=False,
- extra_stage=1,
- use_c5=True,
- norm_type=None,
- norm_decay=0.,
- freeze_norm=False,
- relu_before_extra_convs=True):
- super(FCEFPN, self).__init__()
- self.out_channels = out_channels
- for s in range(extra_stage):
- spatial_scales = spatial_scales + [spatial_scales[-1] / 2.]
- self.spatial_scales = spatial_scales
- self.has_extra_convs = has_extra_convs
- self.extra_stage = extra_stage
- self.use_c5 = use_c5
- self.relu_before_extra_convs = relu_before_extra_convs
- self.norm_type = norm_type
- self.norm_decay = norm_decay
- self.freeze_norm = freeze_norm
- self.lateral_convs = []
- self.fpn_convs = []
- fan = out_channels * 3 * 3
- # stage index 0,1,2,3 stands for res2,res3,res4,res5 on ResNet Backbone
- # 0 <= st_stage < ed_stage <= 3
- st_stage = 4 - len(in_channels)
- ed_stage = st_stage + len(in_channels) - 1
- for i in range(st_stage, ed_stage + 1):
- if i == 3:
- lateral_name = 'fpn_inner_res5_sum'
- else:
- lateral_name = 'fpn_inner_res{}_sum_lateral'.format(i + 2)
- in_c = in_channels[i - st_stage]
- if self.norm_type is not None:
- lateral = self.add_sublayer(
- lateral_name,
- ConvNormLayer(
- ch_in=in_c,
- ch_out=out_channels,
- filter_size=1,
- stride=1,
- norm_type=self.norm_type,
- norm_decay=self.norm_decay,
- freeze_norm=self.freeze_norm,
- initializer=XavierUniform(fan_out=in_c)))
- else:
- lateral = self.add_sublayer(
- lateral_name,
- nn.Conv2D(
- in_channels=in_c,
- out_channels=out_channels,
- kernel_size=1,
- weight_attr=ParamAttr(
- initializer=XavierUniform(fan_out=in_c))))
- self.lateral_convs.append(lateral)
- for i in range(st_stage, ed_stage + 1):
- fpn_name = 'fpn_res{}_sum'.format(i + 2)
- if self.norm_type is not None:
- fpn_conv = self.add_sublayer(
- fpn_name,
- ConvNormLayer(
- ch_in=out_channels,
- ch_out=out_channels,
- filter_size=3,
- stride=1,
- norm_type=self.norm_type,
- norm_decay=self.norm_decay,
- freeze_norm=self.freeze_norm,
- initializer=XavierUniform(fan_out=fan)))
- else:
- fpn_conv = self.add_sublayer(
- fpn_name,
- nn.Conv2D(
- in_channels=out_channels,
- out_channels=out_channels,
- kernel_size=3,
- padding=1,
- weight_attr=ParamAttr(
- initializer=XavierUniform(fan_out=fan))))
- self.fpn_convs.append(fpn_conv)
- # add extra conv levels for RetinaNet(use_c5)/FCOS(use_p5)
- if self.has_extra_convs:
- for i in range(self.extra_stage):
- lvl = ed_stage + 1 + i
- if i == 0 and self.use_c5:
- in_c = in_channels[-1]
- else:
- in_c = out_channels
- extra_fpn_name = 'fpn_{}'.format(lvl + 2)
- if self.norm_type is not None:
- extra_fpn_conv = self.add_sublayer(
- extra_fpn_name,
- ConvNormLayer(
- ch_in=in_c,
- ch_out=out_channels,
- filter_size=3,
- stride=2,
- norm_type=self.norm_type,
- norm_decay=self.norm_decay,
- freeze_norm=self.freeze_norm,
- initializer=XavierUniform(fan_out=fan)))
- else:
- extra_fpn_conv = self.add_sublayer(
- extra_fpn_name,
- nn.Conv2D(
- in_channels=in_c,
- out_channels=out_channels,
- kernel_size=3,
- stride=2,
- padding=1,
- weight_attr=ParamAttr(
- initializer=XavierUniform(fan_out=fan))))
- self.fpn_convs.append(extra_fpn_conv)
- @classmethod
- def from_config(cls, cfg, input_shape):
- return {
- 'in_channels': [i.channels for i in input_shape],
- 'spatial_scales': [1.0 / i.stride for i in input_shape],
- }
- def forward(self, body_feats):
- laterals = []
- num_levels = len(body_feats)
- for i in range(num_levels):
- laterals.append(self.lateral_convs[i](body_feats[i]))
- for i in range(1, num_levels):
- lvl = num_levels - i
- upsample = F.interpolate(
- laterals[lvl],
- scale_factor=2.,
- mode='nearest', )
- laterals[lvl - 1] += upsample
- fpn_output = []
- for lvl in range(num_levels):
- fpn_output.append(self.fpn_convs[lvl](laterals[lvl]))
- if self.extra_stage > 0:
- # use max pool to get more levels on top of outputs (Faster R-CNN, Mask R-CNN)
- if not self.has_extra_convs:
- assert self.extra_stage == 1, 'extra_stage should be 1 if FPN has not extra convs'
- fpn_output.append(F.max_pool2d(fpn_output[-1], 1, stride=2))
- # add extra conv levels for RetinaNet(use_c5)/FCOS(use_p5)
- else:
- if self.use_c5:
- extra_source = body_feats[-1]
- else:
- extra_source = fpn_output[-1]
- fpn_output.append(self.fpn_convs[num_levels](extra_source))
- for i in range(1, self.extra_stage):
- if self.relu_before_extra_convs:
- fpn_output.append(self.fpn_convs[num_levels + i](F.relu(
- fpn_output[-1])))
- else:
- fpn_output.append(self.fpn_convs[num_levels + i](
- fpn_output[-1]))
- return fpn_output
|