123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427 |
- # copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- from __future__ import absolute_import
- from __future__ import division
- from __future__ import print_function
- import paddle
- from paddle import nn
- import paddle.nn.functional as F
- from paddle import ParamAttr
- import os
- import sys
- __dir__ = os.path.dirname(os.path.abspath(__file__))
- sys.path.append(__dir__)
- sys.path.insert(0, os.path.abspath(os.path.join(__dir__, '../../..')))
- from ppocr.modeling.backbones.det_mobilenet_v3 import SEModule
- class DSConv(nn.Layer):
- def __init__(self,
- in_channels,
- out_channels,
- kernel_size,
- padding,
- stride=1,
- groups=None,
- if_act=True,
- act="relu",
- **kwargs):
- super(DSConv, self).__init__()
- if groups == None:
- groups = in_channels
- self.if_act = if_act
- self.act = act
- self.conv1 = nn.Conv2D(
- in_channels=in_channels,
- out_channels=in_channels,
- kernel_size=kernel_size,
- stride=stride,
- padding=padding,
- groups=groups,
- bias_attr=False)
- self.bn1 = nn.BatchNorm(num_channels=in_channels, act=None)
- self.conv2 = nn.Conv2D(
- in_channels=in_channels,
- out_channels=int(in_channels * 4),
- kernel_size=1,
- stride=1,
- bias_attr=False)
- self.bn2 = nn.BatchNorm(num_channels=int(in_channels * 4), act=None)
- self.conv3 = nn.Conv2D(
- in_channels=int(in_channels * 4),
- out_channels=out_channels,
- kernel_size=1,
- stride=1,
- bias_attr=False)
- self._c = [in_channels, out_channels]
- if in_channels != out_channels:
- self.conv_end = nn.Conv2D(
- in_channels=in_channels,
- out_channels=out_channels,
- kernel_size=1,
- stride=1,
- bias_attr=False)
- def forward(self, inputs):
- x = self.conv1(inputs)
- x = self.bn1(x)
- x = self.conv2(x)
- x = self.bn2(x)
- if self.if_act:
- if self.act == "relu":
- x = F.relu(x)
- elif self.act == "hardswish":
- x = F.hardswish(x)
- else:
- print("The activation function({}) is selected incorrectly.".
- format(self.act))
- exit()
- x = self.conv3(x)
- if self._c[0] != self._c[1]:
- x = x + self.conv_end(inputs)
- return x
- class DBFPN(nn.Layer):
- def __init__(self, in_channels, out_channels, use_asf=False, **kwargs):
- super(DBFPN, self).__init__()
- self.out_channels = out_channels
- self.use_asf = use_asf
- weight_attr = paddle.nn.initializer.KaimingUniform()
- self.in2_conv = nn.Conv2D(
- in_channels=in_channels[0],
- out_channels=self.out_channels,
- kernel_size=1,
- weight_attr=ParamAttr(initializer=weight_attr),
- bias_attr=False)
- self.in3_conv = nn.Conv2D(
- in_channels=in_channels[1],
- out_channels=self.out_channels,
- kernel_size=1,
- weight_attr=ParamAttr(initializer=weight_attr),
- bias_attr=False)
- self.in4_conv = nn.Conv2D(
- in_channels=in_channels[2],
- out_channels=self.out_channels,
- kernel_size=1,
- weight_attr=ParamAttr(initializer=weight_attr),
- bias_attr=False)
- self.in5_conv = nn.Conv2D(
- in_channels=in_channels[3],
- out_channels=self.out_channels,
- kernel_size=1,
- weight_attr=ParamAttr(initializer=weight_attr),
- bias_attr=False)
- self.p5_conv = nn.Conv2D(
- in_channels=self.out_channels,
- out_channels=self.out_channels // 4,
- kernel_size=3,
- padding=1,
- weight_attr=ParamAttr(initializer=weight_attr),
- bias_attr=False)
- self.p4_conv = nn.Conv2D(
- in_channels=self.out_channels,
- out_channels=self.out_channels // 4,
- kernel_size=3,
- padding=1,
- weight_attr=ParamAttr(initializer=weight_attr),
- bias_attr=False)
- self.p3_conv = nn.Conv2D(
- in_channels=self.out_channels,
- out_channels=self.out_channels // 4,
- kernel_size=3,
- padding=1,
- weight_attr=ParamAttr(initializer=weight_attr),
- bias_attr=False)
- self.p2_conv = nn.Conv2D(
- in_channels=self.out_channels,
- out_channels=self.out_channels // 4,
- kernel_size=3,
- padding=1,
- weight_attr=ParamAttr(initializer=weight_attr),
- bias_attr=False)
- if self.use_asf is True:
- self.asf = ASFBlock(self.out_channels, self.out_channels // 4)
- def forward(self, x):
- c2, c3, c4, c5 = x
- in5 = self.in5_conv(c5)
- in4 = self.in4_conv(c4)
- in3 = self.in3_conv(c3)
- in2 = self.in2_conv(c2)
- out4 = in4 + F.upsample(
- in5, scale_factor=2, mode="nearest", align_mode=1) # 1/16
- out3 = in3 + F.upsample(
- out4, scale_factor=2, mode="nearest", align_mode=1) # 1/8
- out2 = in2 + F.upsample(
- out3, scale_factor=2, mode="nearest", align_mode=1) # 1/4
- p5 = self.p5_conv(in5)
- p4 = self.p4_conv(out4)
- p3 = self.p3_conv(out3)
- p2 = self.p2_conv(out2)
- p5 = F.upsample(p5, scale_factor=8, mode="nearest", align_mode=1)
- p4 = F.upsample(p4, scale_factor=4, mode="nearest", align_mode=1)
- p3 = F.upsample(p3, scale_factor=2, mode="nearest", align_mode=1)
- fuse = paddle.concat([p5, p4, p3, p2], axis=1)
- if self.use_asf is True:
- fuse = self.asf(fuse, [p5, p4, p3, p2])
- return fuse
- class RSELayer(nn.Layer):
- def __init__(self, in_channels, out_channels, kernel_size, shortcut=True):
- super(RSELayer, self).__init__()
- weight_attr = paddle.nn.initializer.KaimingUniform()
- self.out_channels = out_channels
- self.in_conv = nn.Conv2D(
- in_channels=in_channels,
- out_channels=self.out_channels,
- kernel_size=kernel_size,
- padding=int(kernel_size // 2),
- weight_attr=ParamAttr(initializer=weight_attr),
- bias_attr=False)
- self.se_block = SEModule(self.out_channels)
- self.shortcut = shortcut
- def forward(self, ins):
- x = self.in_conv(ins)
- if self.shortcut:
- out = x + self.se_block(x)
- else:
- out = self.se_block(x)
- return out
- class RSEFPN(nn.Layer):
- def __init__(self, in_channels, out_channels, shortcut=True, **kwargs):
- super(RSEFPN, self).__init__()
- self.out_channels = out_channels
- self.ins_conv = nn.LayerList()
- self.inp_conv = nn.LayerList()
- for i in range(len(in_channels)):
- self.ins_conv.append(
- RSELayer(
- in_channels[i],
- out_channels,
- kernel_size=1,
- shortcut=shortcut))
- self.inp_conv.append(
- RSELayer(
- out_channels,
- out_channels // 4,
- kernel_size=3,
- shortcut=shortcut))
- def forward(self, x):
- c2, c3, c4, c5 = x
- in5 = self.ins_conv[3](c5)
- in4 = self.ins_conv[2](c4)
- in3 = self.ins_conv[1](c3)
- in2 = self.ins_conv[0](c2)
- out4 = in4 + F.upsample(
- in5, scale_factor=2, mode="nearest", align_mode=1) # 1/16
- out3 = in3 + F.upsample(
- out4, scale_factor=2, mode="nearest", align_mode=1) # 1/8
- out2 = in2 + F.upsample(
- out3, scale_factor=2, mode="nearest", align_mode=1) # 1/4
- p5 = self.inp_conv[3](in5)
- p4 = self.inp_conv[2](out4)
- p3 = self.inp_conv[1](out3)
- p2 = self.inp_conv[0](out2)
- p5 = F.upsample(p5, scale_factor=8, mode="nearest", align_mode=1)
- p4 = F.upsample(p4, scale_factor=4, mode="nearest", align_mode=1)
- p3 = F.upsample(p3, scale_factor=2, mode="nearest", align_mode=1)
- fuse = paddle.concat([p5, p4, p3, p2], axis=1)
- return fuse
- class LKPAN(nn.Layer):
- def __init__(self, in_channels, out_channels, mode='large', **kwargs):
- super(LKPAN, self).__init__()
- self.out_channels = out_channels
- weight_attr = paddle.nn.initializer.KaimingUniform()
- self.ins_conv = nn.LayerList()
- self.inp_conv = nn.LayerList()
- # pan head
- self.pan_head_conv = nn.LayerList()
- self.pan_lat_conv = nn.LayerList()
- if mode.lower() == 'lite':
- p_layer = DSConv
- elif mode.lower() == 'large':
- p_layer = nn.Conv2D
- else:
- raise ValueError(
- "mode can only be one of ['lite', 'large'], but received {}".
- format(mode))
- for i in range(len(in_channels)):
- self.ins_conv.append(
- nn.Conv2D(
- in_channels=in_channels[i],
- out_channels=self.out_channels,
- kernel_size=1,
- weight_attr=ParamAttr(initializer=weight_attr),
- bias_attr=False))
- self.inp_conv.append(
- p_layer(
- in_channels=self.out_channels,
- out_channels=self.out_channels // 4,
- kernel_size=9,
- padding=4,
- weight_attr=ParamAttr(initializer=weight_attr),
- bias_attr=False))
- if i > 0:
- self.pan_head_conv.append(
- nn.Conv2D(
- in_channels=self.out_channels // 4,
- out_channels=self.out_channels // 4,
- kernel_size=3,
- padding=1,
- stride=2,
- weight_attr=ParamAttr(initializer=weight_attr),
- bias_attr=False))
- self.pan_lat_conv.append(
- p_layer(
- in_channels=self.out_channels // 4,
- out_channels=self.out_channels // 4,
- kernel_size=9,
- padding=4,
- weight_attr=ParamAttr(initializer=weight_attr),
- bias_attr=False))
- def forward(self, x):
- c2, c3, c4, c5 = x
- in5 = self.ins_conv[3](c5)
- in4 = self.ins_conv[2](c4)
- in3 = self.ins_conv[1](c3)
- in2 = self.ins_conv[0](c2)
- out4 = in4 + F.upsample(
- in5, scale_factor=2, mode="nearest", align_mode=1) # 1/16
- out3 = in3 + F.upsample(
- out4, scale_factor=2, mode="nearest", align_mode=1) # 1/8
- out2 = in2 + F.upsample(
- out3, scale_factor=2, mode="nearest", align_mode=1) # 1/4
- f5 = self.inp_conv[3](in5)
- f4 = self.inp_conv[2](out4)
- f3 = self.inp_conv[1](out3)
- f2 = self.inp_conv[0](out2)
- pan3 = f3 + self.pan_head_conv[0](f2)
- pan4 = f4 + self.pan_head_conv[1](pan3)
- pan5 = f5 + self.pan_head_conv[2](pan4)
- p2 = self.pan_lat_conv[0](f2)
- p3 = self.pan_lat_conv[1](pan3)
- p4 = self.pan_lat_conv[2](pan4)
- p5 = self.pan_lat_conv[3](pan5)
- p5 = F.upsample(p5, scale_factor=8, mode="nearest", align_mode=1)
- p4 = F.upsample(p4, scale_factor=4, mode="nearest", align_mode=1)
- p3 = F.upsample(p3, scale_factor=2, mode="nearest", align_mode=1)
- fuse = paddle.concat([p5, p4, p3, p2], axis=1)
- return fuse
- class ASFBlock(nn.Layer):
- """
- This code is refered from:
- https://github.com/MhLiao/DB/blob/master/decoders/feature_attention.py
- """
- def __init__(self, in_channels, inter_channels, out_features_num=4):
- """
- Adaptive Scale Fusion (ASF) block of DBNet++
- Args:
- in_channels: the number of channels in the input data
- inter_channels: the number of middle channels
- out_features_num: the number of fused stages
- """
- super(ASFBlock, self).__init__()
- weight_attr = paddle.nn.initializer.KaimingUniform()
- self.in_channels = in_channels
- self.inter_channels = inter_channels
- self.out_features_num = out_features_num
- self.conv = nn.Conv2D(in_channels, inter_channels, 3, padding=1)
- self.spatial_scale = nn.Sequential(
- #Nx1xHxW
- nn.Conv2D(
- in_channels=1,
- out_channels=1,
- kernel_size=3,
- bias_attr=False,
- padding=1,
- weight_attr=ParamAttr(initializer=weight_attr)),
- nn.ReLU(),
- nn.Conv2D(
- in_channels=1,
- out_channels=1,
- kernel_size=1,
- bias_attr=False,
- weight_attr=ParamAttr(initializer=weight_attr)),
- nn.Sigmoid())
- self.channel_scale = nn.Sequential(
- nn.Conv2D(
- in_channels=inter_channels,
- out_channels=out_features_num,
- kernel_size=1,
- bias_attr=False,
- weight_attr=ParamAttr(initializer=weight_attr)),
- nn.Sigmoid())
- def forward(self, fuse_features, features_list):
- fuse_features = self.conv(fuse_features)
- spatial_x = paddle.mean(fuse_features, axis=1, keepdim=True)
- attention_scores = self.spatial_scale(spatial_x) + fuse_features
- attention_scores = self.channel_scale(attention_scores)
- assert len(features_list) == self.out_features_num
- out_list = []
- for i in range(self.out_features_num):
- out_list.append(attention_scores[:, i:i + 1] * features_list[i])
- return paddle.concat(out_list, axis=1)
|