123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185 |
- # copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- from __future__ import absolute_import
- from __future__ import division
- from __future__ import print_function
- import paddle
- from paddle import nn
- import paddle.nn.functional as F
- from paddle import ParamAttr
- import os
- import sys
- import math
- from paddle.nn.initializer import TruncatedNormal, Constant, Normal
- ones_ = Constant(value=1.)
- zeros_ = Constant(value=0.)
- __dir__ = os.path.dirname(os.path.abspath(__file__))
- sys.path.append(__dir__)
- sys.path.insert(0, os.path.abspath(os.path.join(__dir__, '../../..')))
- class Conv_BN_ReLU(nn.Layer):
- def __init__(self,
- in_planes,
- out_planes,
- kernel_size=1,
- stride=1,
- padding=0):
- super(Conv_BN_ReLU, self).__init__()
- self.conv = nn.Conv2D(
- in_planes,
- out_planes,
- kernel_size=kernel_size,
- stride=stride,
- padding=padding,
- bias_attr=False)
- self.bn = nn.BatchNorm2D(out_planes)
- self.relu = nn.ReLU()
- for m in self.sublayers():
- if isinstance(m, nn.Conv2D):
- n = m._kernel_size[0] * m._kernel_size[1] * m._out_channels
- normal_ = Normal(mean=0.0, std=math.sqrt(2. / n))
- normal_(m.weight)
- elif isinstance(m, nn.BatchNorm2D):
- zeros_(m.bias)
- ones_(m.weight)
- def forward(self, x):
- return self.relu(self.bn(self.conv(x)))
- class FPEM(nn.Layer):
- def __init__(self, in_channels, out_channels):
- super(FPEM, self).__init__()
- planes = out_channels
- self.dwconv3_1 = nn.Conv2D(
- planes,
- planes,
- kernel_size=3,
- stride=1,
- padding=1,
- groups=planes,
- bias_attr=False)
- self.smooth_layer3_1 = Conv_BN_ReLU(planes, planes)
- self.dwconv2_1 = nn.Conv2D(
- planes,
- planes,
- kernel_size=3,
- stride=1,
- padding=1,
- groups=planes,
- bias_attr=False)
- self.smooth_layer2_1 = Conv_BN_ReLU(planes, planes)
- self.dwconv1_1 = nn.Conv2D(
- planes,
- planes,
- kernel_size=3,
- stride=1,
- padding=1,
- groups=planes,
- bias_attr=False)
- self.smooth_layer1_1 = Conv_BN_ReLU(planes, planes)
- self.dwconv2_2 = nn.Conv2D(
- planes,
- planes,
- kernel_size=3,
- stride=2,
- padding=1,
- groups=planes,
- bias_attr=False)
- self.smooth_layer2_2 = Conv_BN_ReLU(planes, planes)
- self.dwconv3_2 = nn.Conv2D(
- planes,
- planes,
- kernel_size=3,
- stride=2,
- padding=1,
- groups=planes,
- bias_attr=False)
- self.smooth_layer3_2 = Conv_BN_ReLU(planes, planes)
- self.dwconv4_2 = nn.Conv2D(
- planes,
- planes,
- kernel_size=3,
- stride=2,
- padding=1,
- groups=planes,
- bias_attr=False)
- self.smooth_layer4_2 = Conv_BN_ReLU(planes, planes)
- def _upsample_add(self, x, y):
- return F.upsample(x, scale_factor=2, mode='bilinear') + y
- def forward(self, f1, f2, f3, f4):
- # up-down
- f3 = self.smooth_layer3_1(self.dwconv3_1(self._upsample_add(f4, f3)))
- f2 = self.smooth_layer2_1(self.dwconv2_1(self._upsample_add(f3, f2)))
- f1 = self.smooth_layer1_1(self.dwconv1_1(self._upsample_add(f2, f1)))
- # down-up
- f2 = self.smooth_layer2_2(self.dwconv2_2(self._upsample_add(f2, f1)))
- f3 = self.smooth_layer3_2(self.dwconv3_2(self._upsample_add(f3, f2)))
- f4 = self.smooth_layer4_2(self.dwconv4_2(self._upsample_add(f4, f3)))
- return f1, f2, f3, f4
- class CTFPN(nn.Layer):
- def __init__(self, in_channels, out_channel=128):
- super(CTFPN, self).__init__()
- self.out_channels = out_channel * 4
- self.reduce_layer1 = Conv_BN_ReLU(in_channels[0], 128)
- self.reduce_layer2 = Conv_BN_ReLU(in_channels[1], 128)
- self.reduce_layer3 = Conv_BN_ReLU(in_channels[2], 128)
- self.reduce_layer4 = Conv_BN_ReLU(in_channels[3], 128)
- self.fpem1 = FPEM(in_channels=(64, 128, 256, 512), out_channels=128)
- self.fpem2 = FPEM(in_channels=(64, 128, 256, 512), out_channels=128)
- def _upsample(self, x, scale=1):
- return F.upsample(x, scale_factor=scale, mode='bilinear')
- def forward(self, f):
- # # reduce channel
- f1 = self.reduce_layer1(f[0]) # N,64,160,160 --> N, 128, 160, 160
- f2 = self.reduce_layer2(f[1]) # N, 128, 80, 80 --> N, 128, 80, 80
- f3 = self.reduce_layer3(f[2]) # N, 256, 40, 40 --> N, 128, 40, 40
- f4 = self.reduce_layer4(f[3]) # N, 512, 20, 20 --> N, 128, 20, 20
- # FPEM
- f1_1, f2_1, f3_1, f4_1 = self.fpem1(f1, f2, f3, f4)
- f1_2, f2_2, f3_2, f4_2 = self.fpem2(f1_1, f2_1, f3_1, f4_1)
- # FFM
- f1 = f1_1 + f1_2
- f2 = f2_1 + f2_2
- f3 = f3_1 + f3_2
- f4 = f4_1 + f4_2
- f2 = self._upsample(f2, scale=2)
- f3 = self._upsample(f3, scale=4)
- f4 = self._upsample(f4, scale=8)
- ff = paddle.concat((f1, f2, f3, f4), 1) # N,512, 160,160
- return ff
|