123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324 |
- # Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # The code is based on:
- # https://github.com/PaddlePaddle/PaddleDetection/blob/release%2F2.3/ppdet/modeling/necks/csp_pan.py
- import paddle
- import paddle.nn as nn
- import paddle.nn.functional as F
- from paddle import ParamAttr
- __all__ = ['CSPPAN']
- class ConvBNLayer(nn.Layer):
- def __init__(self,
- in_channel=96,
- out_channel=96,
- kernel_size=3,
- stride=1,
- groups=1,
- act='leaky_relu'):
- super(ConvBNLayer, self).__init__()
- initializer = nn.initializer.KaimingUniform()
- self.act = act
- assert self.act in ['leaky_relu', "hard_swish"]
- self.conv = nn.Conv2D(
- in_channels=in_channel,
- out_channels=out_channel,
- kernel_size=kernel_size,
- groups=groups,
- padding=(kernel_size - 1) // 2,
- stride=stride,
- weight_attr=ParamAttr(initializer=initializer),
- bias_attr=False)
- self.bn = nn.BatchNorm2D(out_channel)
- def forward(self, x):
- x = self.bn(self.conv(x))
- if self.act == "leaky_relu":
- x = F.leaky_relu(x)
- elif self.act == "hard_swish":
- x = F.hardswish(x)
- return x
- class DPModule(nn.Layer):
- """
- Depth-wise and point-wise module.
- Args:
- in_channel (int): The input channels of this Module.
- out_channel (int): The output channels of this Module.
- kernel_size (int): The conv2d kernel size of this Module.
- stride (int): The conv2d's stride of this Module.
- act (str): The activation function of this Module,
- Now support `leaky_relu` and `hard_swish`.
- """
- def __init__(self,
- in_channel=96,
- out_channel=96,
- kernel_size=3,
- stride=1,
- act='leaky_relu'):
- super(DPModule, self).__init__()
- initializer = nn.initializer.KaimingUniform()
- self.act = act
- self.dwconv = nn.Conv2D(
- in_channels=in_channel,
- out_channels=out_channel,
- kernel_size=kernel_size,
- groups=out_channel,
- padding=(kernel_size - 1) // 2,
- stride=stride,
- weight_attr=ParamAttr(initializer=initializer),
- bias_attr=False)
- self.bn1 = nn.BatchNorm2D(out_channel)
- self.pwconv = nn.Conv2D(
- in_channels=out_channel,
- out_channels=out_channel,
- kernel_size=1,
- groups=1,
- padding=0,
- weight_attr=ParamAttr(initializer=initializer),
- bias_attr=False)
- self.bn2 = nn.BatchNorm2D(out_channel)
- def act_func(self, x):
- if self.act == "leaky_relu":
- x = F.leaky_relu(x)
- elif self.act == "hard_swish":
- x = F.hardswish(x)
- return x
- def forward(self, x):
- x = self.act_func(self.bn1(self.dwconv(x)))
- x = self.act_func(self.bn2(self.pwconv(x)))
- return x
- class DarknetBottleneck(nn.Layer):
- """The basic bottleneck block used in Darknet.
- Each Block consists of two ConvModules and the input is added to the
- final output. Each ConvModule is composed of Conv, BN, and act.
- The first convLayer has filter size of 1x1 and the second one has the
- filter size of 3x3.
- Args:
- in_channels (int): The input channels of this Module.
- out_channels (int): The output channels of this Module.
- expansion (int): The kernel size of the convolution. Default: 0.5
- add_identity (bool): Whether to add identity to the out.
- Default: True
- use_depthwise (bool): Whether to use depthwise separable convolution.
- Default: False
- """
- def __init__(self,
- in_channels,
- out_channels,
- kernel_size=3,
- expansion=0.5,
- add_identity=True,
- use_depthwise=False,
- act="leaky_relu"):
- super(DarknetBottleneck, self).__init__()
- hidden_channels = int(out_channels * expansion)
- conv_func = DPModule if use_depthwise else ConvBNLayer
- self.conv1 = ConvBNLayer(
- in_channel=in_channels,
- out_channel=hidden_channels,
- kernel_size=1,
- act=act)
- self.conv2 = conv_func(
- in_channel=hidden_channels,
- out_channel=out_channels,
- kernel_size=kernel_size,
- stride=1,
- act=act)
- self.add_identity = \
- add_identity and in_channels == out_channels
- def forward(self, x):
- identity = x
- out = self.conv1(x)
- out = self.conv2(out)
- if self.add_identity:
- return out + identity
- else:
- return out
- class CSPLayer(nn.Layer):
- """Cross Stage Partial Layer.
- Args:
- in_channels (int): The input channels of the CSP layer.
- out_channels (int): The output channels of the CSP layer.
- expand_ratio (float): Ratio to adjust the number of channels of the
- hidden layer. Default: 0.5
- num_blocks (int): Number of blocks. Default: 1
- add_identity (bool): Whether to add identity in blocks.
- Default: True
- use_depthwise (bool): Whether to depthwise separable convolution in
- blocks. Default: False
- """
- def __init__(self,
- in_channels,
- out_channels,
- kernel_size=3,
- expand_ratio=0.5,
- num_blocks=1,
- add_identity=True,
- use_depthwise=False,
- act="leaky_relu"):
- super().__init__()
- mid_channels = int(out_channels * expand_ratio)
- self.main_conv = ConvBNLayer(in_channels, mid_channels, 1, act=act)
- self.short_conv = ConvBNLayer(in_channels, mid_channels, 1, act=act)
- self.final_conv = ConvBNLayer(
- 2 * mid_channels, out_channels, 1, act=act)
- self.blocks = nn.Sequential(* [
- DarknetBottleneck(
- mid_channels,
- mid_channels,
- kernel_size,
- 1.0,
- add_identity,
- use_depthwise,
- act=act) for _ in range(num_blocks)
- ])
- def forward(self, x):
- x_short = self.short_conv(x)
- x_main = self.main_conv(x)
- x_main = self.blocks(x_main)
- x_final = paddle.concat((x_main, x_short), axis=1)
- return self.final_conv(x_final)
- class Channel_T(nn.Layer):
- def __init__(self,
- in_channels=[116, 232, 464],
- out_channels=96,
- act="leaky_relu"):
- super(Channel_T, self).__init__()
- self.convs = nn.LayerList()
- for i in range(len(in_channels)):
- self.convs.append(
- ConvBNLayer(
- in_channels[i], out_channels, 1, act=act))
- def forward(self, x):
- outs = [self.convs[i](x[i]) for i in range(len(x))]
- return outs
- class CSPPAN(nn.Layer):
- """Path Aggregation Network with CSP module.
- Args:
- in_channels (List[int]): Number of input channels per scale.
- out_channels (int): Number of output channels (used at each scale)
- kernel_size (int): The conv2d kernel size of this Module.
- num_csp_blocks (int): Number of bottlenecks in CSPLayer. Default: 1
- use_depthwise (bool): Whether to depthwise separable convolution in
- blocks. Default: True
- """
- def __init__(self,
- in_channels,
- out_channels,
- kernel_size=5,
- num_csp_blocks=1,
- use_depthwise=True,
- act='hard_swish'):
- super(CSPPAN, self).__init__()
- self.in_channels = in_channels
- self.out_channels = [out_channels] * len(in_channels)
- conv_func = DPModule if use_depthwise else ConvBNLayer
- self.conv_t = Channel_T(in_channels, out_channels, act=act)
- # build top-down blocks
- self.upsample = nn.Upsample(scale_factor=2, mode='nearest')
- self.top_down_blocks = nn.LayerList()
- for idx in range(len(in_channels) - 1, 0, -1):
- self.top_down_blocks.append(
- CSPLayer(
- out_channels * 2,
- out_channels,
- kernel_size=kernel_size,
- num_blocks=num_csp_blocks,
- add_identity=False,
- use_depthwise=use_depthwise,
- act=act))
- # build bottom-up blocks
- self.downsamples = nn.LayerList()
- self.bottom_up_blocks = nn.LayerList()
- for idx in range(len(in_channels) - 1):
- self.downsamples.append(
- conv_func(
- out_channels,
- out_channels,
- kernel_size=kernel_size,
- stride=2,
- act=act))
- self.bottom_up_blocks.append(
- CSPLayer(
- out_channels * 2,
- out_channels,
- kernel_size=kernel_size,
- num_blocks=num_csp_blocks,
- add_identity=False,
- use_depthwise=use_depthwise,
- act=act))
- def forward(self, inputs):
- """
- Args:
- inputs (tuple[Tensor]): input features.
- Returns:
- tuple[Tensor]: CSPPAN features.
- """
- assert len(inputs) == len(self.in_channels)
- inputs = self.conv_t(inputs)
- # top-down path
- inner_outs = [inputs[-1]]
- for idx in range(len(self.in_channels) - 1, 0, -1):
- feat_heigh = inner_outs[0]
- feat_low = inputs[idx - 1]
- upsample_feat = F.upsample(
- feat_heigh, size=paddle.shape(feat_low)[2:4], mode="nearest")
- inner_out = self.top_down_blocks[len(self.in_channels) - 1 - idx](
- paddle.concat([upsample_feat, feat_low], 1))
- inner_outs.insert(0, inner_out)
- # bottom-up path
- outs = [inner_outs[0]]
- for idx in range(len(self.in_channels) - 1):
- feat_low = outs[-1]
- feat_height = inner_outs[idx + 1]
- downsample_feat = self.downsamples[idx](feat_low)
- out = self.bottom_up_blocks[idx](paddle.concat(
- [downsample_feat, feat_height], 1))
- outs.append(out)
- return tuple(outs)
|