123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687 |
- # copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- from __future__ import absolute_import
- from __future__ import division
- from __future__ import print_function
- import math
- import paddle
- from paddle import ParamAttr, nn
- from paddle.nn import functional as F
- def get_para_bias_attr(l2_decay, k):
- regularizer = paddle.regularizer.L2Decay(l2_decay)
- stdv = 1.0 / math.sqrt(k * 1.0)
- initializer = nn.initializer.Uniform(-stdv, stdv)
- weight_attr = ParamAttr(regularizer=regularizer, initializer=initializer)
- bias_attr = ParamAttr(regularizer=regularizer, initializer=initializer)
- return [weight_attr, bias_attr]
- class CTCHead(nn.Layer):
- def __init__(self,
- in_channels,
- out_channels,
- fc_decay=0.0004,
- mid_channels=None,
- return_feats=False,
- **kwargs):
- super(CTCHead, self).__init__()
- if mid_channels is None:
- weight_attr, bias_attr = get_para_bias_attr(
- l2_decay=fc_decay, k=in_channels)
- self.fc = nn.Linear(
- in_channels,
- out_channels,
- weight_attr=weight_attr,
- bias_attr=bias_attr)
- else:
- weight_attr1, bias_attr1 = get_para_bias_attr(
- l2_decay=fc_decay, k=in_channels)
- self.fc1 = nn.Linear(
- in_channels,
- mid_channels,
- weight_attr=weight_attr1,
- bias_attr=bias_attr1)
- weight_attr2, bias_attr2 = get_para_bias_attr(
- l2_decay=fc_decay, k=mid_channels)
- self.fc2 = nn.Linear(
- mid_channels,
- out_channels,
- weight_attr=weight_attr2,
- bias_attr=bias_attr2)
- self.out_channels = out_channels
- self.mid_channels = mid_channels
- self.return_feats = return_feats
- def forward(self, x, targets=None):
- if self.mid_channels is None:
- predicts = self.fc(x)
- else:
- x = self.fc1(x)
- predicts = self.fc2(x)
- if self.return_feats:
- result = (x, predicts)
- else:
- result = predicts
- if not self.training:
- predicts = F.softmax(predicts, axis=2)
- result = predicts
- return result
|