123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388 |
- # copyright (c) 2022 PaddlePaddle Authors. All Rights Reserve.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- """
- This code is refer from:
- https://github.com/open-mmlab/mmocr/blob/main/mmocr/models/textdet/modules/local_graph.py
- """
- from __future__ import absolute_import
- from __future__ import division
- from __future__ import print_function
- import numpy as np
- import paddle
- import paddle.nn as nn
- from ppocr.ext_op import RoIAlignRotated
- def normalize_adjacent_matrix(A):
- assert A.ndim == 2
- assert A.shape[0] == A.shape[1]
- A = A + np.eye(A.shape[0])
- d = np.sum(A, axis=0)
- d = np.clip(d, 0, None)
- d_inv = np.power(d, -0.5).flatten()
- d_inv[np.isinf(d_inv)] = 0.0
- d_inv = np.diag(d_inv)
- G = A.dot(d_inv).transpose().dot(d_inv)
- return G
- def euclidean_distance_matrix(A, B):
- """Calculate the Euclidean distance matrix.
- Args:
- A (ndarray): The point sequence.
- B (ndarray): The point sequence with the same dimensions as A.
- returns:
- D (ndarray): The Euclidean distance matrix.
- """
- assert A.ndim == 2
- assert B.ndim == 2
- assert A.shape[1] == B.shape[1]
- m = A.shape[0]
- n = B.shape[0]
- A_dots = (A * A).sum(axis=1).reshape((m, 1)) * np.ones(shape=(1, n))
- B_dots = (B * B).sum(axis=1) * np.ones(shape=(m, 1))
- D_squared = A_dots + B_dots - 2 * A.dot(B.T)
- zero_mask = np.less(D_squared, 0.0)
- D_squared[zero_mask] = 0.0
- D = np.sqrt(D_squared)
- return D
- def feature_embedding(input_feats, out_feat_len):
- """Embed features. This code was partially adapted from
- https://github.com/GXYM/DRRG licensed under the MIT license.
- Args:
- input_feats (ndarray): The input features of shape (N, d), where N is
- the number of nodes in graph, d is the input feature vector length.
- out_feat_len (int): The length of output feature vector.
- Returns:
- embedded_feats (ndarray): The embedded features.
- """
- assert input_feats.ndim == 2
- assert isinstance(out_feat_len, int)
- assert out_feat_len >= input_feats.shape[1]
- num_nodes = input_feats.shape[0]
- feat_dim = input_feats.shape[1]
- feat_repeat_times = out_feat_len // feat_dim
- residue_dim = out_feat_len % feat_dim
- if residue_dim > 0:
- embed_wave = np.array([
- np.power(1000, 2.0 * (j // 2) / feat_repeat_times + 1)
- for j in range(feat_repeat_times + 1)
- ]).reshape((feat_repeat_times + 1, 1, 1))
- repeat_feats = np.repeat(
- np.expand_dims(
- input_feats, axis=0), feat_repeat_times, axis=0)
- residue_feats = np.hstack([
- input_feats[:, 0:residue_dim], np.zeros(
- (num_nodes, feat_dim - residue_dim))
- ])
- residue_feats = np.expand_dims(residue_feats, axis=0)
- repeat_feats = np.concatenate([repeat_feats, residue_feats], axis=0)
- embedded_feats = repeat_feats / embed_wave
- embedded_feats[:, 0::2] = np.sin(embedded_feats[:, 0::2])
- embedded_feats[:, 1::2] = np.cos(embedded_feats[:, 1::2])
- embedded_feats = np.transpose(embedded_feats, (1, 0, 2)).reshape(
- (num_nodes, -1))[:, 0:out_feat_len]
- else:
- embed_wave = np.array([
- np.power(1000, 2.0 * (j // 2) / feat_repeat_times)
- for j in range(feat_repeat_times)
- ]).reshape((feat_repeat_times, 1, 1))
- repeat_feats = np.repeat(
- np.expand_dims(
- input_feats, axis=0), feat_repeat_times, axis=0)
- embedded_feats = repeat_feats / embed_wave
- embedded_feats[:, 0::2] = np.sin(embedded_feats[:, 0::2])
- embedded_feats[:, 1::2] = np.cos(embedded_feats[:, 1::2])
- embedded_feats = np.transpose(embedded_feats, (1, 0, 2)).reshape(
- (num_nodes, -1)).astype(np.float32)
- return embedded_feats
- class LocalGraphs:
- def __init__(self, k_at_hops, num_adjacent_linkages, node_geo_feat_len,
- pooling_scale, pooling_output_size, local_graph_thr):
- assert len(k_at_hops) == 2
- assert all(isinstance(n, int) for n in k_at_hops)
- assert isinstance(num_adjacent_linkages, int)
- assert isinstance(node_geo_feat_len, int)
- assert isinstance(pooling_scale, float)
- assert all(isinstance(n, int) for n in pooling_output_size)
- assert isinstance(local_graph_thr, float)
- self.k_at_hops = k_at_hops
- self.num_adjacent_linkages = num_adjacent_linkages
- self.node_geo_feat_dim = node_geo_feat_len
- self.pooling = RoIAlignRotated(pooling_output_size, pooling_scale)
- self.local_graph_thr = local_graph_thr
- def generate_local_graphs(self, sorted_dist_inds, gt_comp_labels):
- """Generate local graphs for GCN to predict which instance a text
- component belongs to.
- Args:
- sorted_dist_inds (ndarray): The complete graph node indices, which
- is sorted according to the Euclidean distance.
- gt_comp_labels(ndarray): The ground truth labels define the
- instance to which the text components (nodes in graphs) belong.
- Returns:
- pivot_local_graphs(list[list[int]]): The list of local graph
- neighbor indices of pivots.
- pivot_knns(list[list[int]]): The list of k-nearest neighbor indices
- of pivots.
- """
- assert sorted_dist_inds.ndim == 2
- assert (sorted_dist_inds.shape[0] == sorted_dist_inds.shape[1] ==
- gt_comp_labels.shape[0])
- knn_graph = sorted_dist_inds[:, 1:self.k_at_hops[0] + 1]
- pivot_local_graphs = []
- pivot_knns = []
- for pivot_ind, knn in enumerate(knn_graph):
- local_graph_neighbors = set(knn)
- for neighbor_ind in knn:
- local_graph_neighbors.update(
- set(sorted_dist_inds[neighbor_ind, 1:self.k_at_hops[1] +
- 1]))
- local_graph_neighbors.discard(pivot_ind)
- pivot_local_graph = list(local_graph_neighbors)
- pivot_local_graph.insert(0, pivot_ind)
- pivot_knn = [pivot_ind] + list(knn)
- if pivot_ind < 1:
- pivot_local_graphs.append(pivot_local_graph)
- pivot_knns.append(pivot_knn)
- else:
- add_flag = True
- for graph_ind, added_knn in enumerate(pivot_knns):
- added_pivot_ind = added_knn[0]
- added_local_graph = pivot_local_graphs[graph_ind]
- union = len(
- set(pivot_local_graph[1:]).union(
- set(added_local_graph[1:])))
- intersect = len(
- set(pivot_local_graph[1:]).intersection(
- set(added_local_graph[1:])))
- local_graph_iou = intersect / (union + 1e-8)
- if (local_graph_iou > self.local_graph_thr and
- pivot_ind in added_knn and
- gt_comp_labels[added_pivot_ind] ==
- gt_comp_labels[pivot_ind] and
- gt_comp_labels[pivot_ind] != 0):
- add_flag = False
- break
- if add_flag:
- pivot_local_graphs.append(pivot_local_graph)
- pivot_knns.append(pivot_knn)
- return pivot_local_graphs, pivot_knns
- def generate_gcn_input(self, node_feat_batch, node_label_batch,
- local_graph_batch, knn_batch, sorted_dist_ind_batch):
- """Generate graph convolution network input data.
- Args:
- node_feat_batch (List[Tensor]): The batched graph node features.
- node_label_batch (List[ndarray]): The batched text component
- labels.
- local_graph_batch (List[List[list[int]]]): The local graph node
- indices of image batch.
- knn_batch (List[List[list[int]]]): The knn graph node indices of
- image batch.
- sorted_dist_ind_batch (list[ndarray]): The node indices sorted
- according to the Euclidean distance.
- Returns:
- local_graphs_node_feat (Tensor): The node features of graph.
- adjacent_matrices (Tensor): The adjacent matrices of local graphs.
- pivots_knn_inds (Tensor): The k-nearest neighbor indices in
- local graph.
- gt_linkage (Tensor): The surpervision signal of GCN for linkage
- prediction.
- """
- assert isinstance(node_feat_batch, list)
- assert isinstance(node_label_batch, list)
- assert isinstance(local_graph_batch, list)
- assert isinstance(knn_batch, list)
- assert isinstance(sorted_dist_ind_batch, list)
- num_max_nodes = max([
- len(pivot_local_graph)
- for pivot_local_graphs in local_graph_batch
- for pivot_local_graph in pivot_local_graphs
- ])
- local_graphs_node_feat = []
- adjacent_matrices = []
- pivots_knn_inds = []
- pivots_gt_linkage = []
- for batch_ind, sorted_dist_inds in enumerate(sorted_dist_ind_batch):
- node_feats = node_feat_batch[batch_ind]
- pivot_local_graphs = local_graph_batch[batch_ind]
- pivot_knns = knn_batch[batch_ind]
- node_labels = node_label_batch[batch_ind]
- for graph_ind, pivot_knn in enumerate(pivot_knns):
- pivot_local_graph = pivot_local_graphs[graph_ind]
- num_nodes = len(pivot_local_graph)
- pivot_ind = pivot_local_graph[0]
- node2ind_map = {j: i for i, j in enumerate(pivot_local_graph)}
- knn_inds = paddle.to_tensor(
- [node2ind_map[i] for i in pivot_knn[1:]])
- pivot_feats = node_feats[pivot_ind]
- normalized_feats = node_feats[paddle.to_tensor(
- pivot_local_graph)] - pivot_feats
- adjacent_matrix = np.zeros(
- (num_nodes, num_nodes), dtype=np.float32)
- for node in pivot_local_graph:
- neighbors = sorted_dist_inds[node, 1:
- self.num_adjacent_linkages + 1]
- for neighbor in neighbors:
- if neighbor in pivot_local_graph:
- adjacent_matrix[node2ind_map[node], node2ind_map[
- neighbor]] = 1
- adjacent_matrix[node2ind_map[neighbor],
- node2ind_map[node]] = 1
- adjacent_matrix = normalize_adjacent_matrix(adjacent_matrix)
- pad_adjacent_matrix = paddle.zeros(
- (num_max_nodes, num_max_nodes))
- pad_adjacent_matrix[:num_nodes, :num_nodes] = paddle.cast(
- paddle.to_tensor(adjacent_matrix), 'float32')
- pad_normalized_feats = paddle.concat(
- [
- normalized_feats, paddle.zeros(
- (num_max_nodes - num_nodes,
- normalized_feats.shape[1]))
- ],
- axis=0)
- local_graph_labels = node_labels[pivot_local_graph]
- knn_labels = local_graph_labels[knn_inds.numpy()]
- link_labels = ((node_labels[pivot_ind] == knn_labels) &
- (node_labels[pivot_ind] > 0)).astype(np.int64)
- link_labels = paddle.to_tensor(link_labels)
- local_graphs_node_feat.append(pad_normalized_feats)
- adjacent_matrices.append(pad_adjacent_matrix)
- pivots_knn_inds.append(knn_inds)
- pivots_gt_linkage.append(link_labels)
- local_graphs_node_feat = paddle.stack(local_graphs_node_feat, 0)
- adjacent_matrices = paddle.stack(adjacent_matrices, 0)
- pivots_knn_inds = paddle.stack(pivots_knn_inds, 0)
- pivots_gt_linkage = paddle.stack(pivots_gt_linkage, 0)
- return (local_graphs_node_feat, adjacent_matrices, pivots_knn_inds,
- pivots_gt_linkage)
- def __call__(self, feat_maps, comp_attribs):
- """Generate local graphs as GCN input.
- Args:
- feat_maps (Tensor): The feature maps to extract the content
- features of text components.
- comp_attribs (ndarray): The text component attributes.
- Returns:
- local_graphs_node_feat (Tensor): The node features of graph.
- adjacent_matrices (Tensor): The adjacent matrices of local graphs.
- pivots_knn_inds (Tensor): The k-nearest neighbor indices in local
- graph.
- gt_linkage (Tensor): The surpervision signal of GCN for linkage
- prediction.
- """
- assert isinstance(feat_maps, paddle.Tensor)
- assert comp_attribs.ndim == 3
- assert comp_attribs.shape[2] == 8
- sorted_dist_inds_batch = []
- local_graph_batch = []
- knn_batch = []
- node_feat_batch = []
- node_label_batch = []
- for batch_ind in range(comp_attribs.shape[0]):
- num_comps = int(comp_attribs[batch_ind, 0, 0])
- comp_geo_attribs = comp_attribs[batch_ind, :num_comps, 1:7]
- node_labels = comp_attribs[batch_ind, :num_comps, 7].astype(
- np.int32)
- comp_centers = comp_geo_attribs[:, 0:2]
- distance_matrix = euclidean_distance_matrix(comp_centers,
- comp_centers)
- batch_id = np.zeros(
- (comp_geo_attribs.shape[0], 1), dtype=np.float32) * batch_ind
- comp_geo_attribs[:, -2] = np.clip(comp_geo_attribs[:, -2], -1, 1)
- angle = np.arccos(comp_geo_attribs[:, -2]) * np.sign(
- comp_geo_attribs[:, -1])
- angle = angle.reshape((-1, 1))
- rotated_rois = np.hstack(
- [batch_id, comp_geo_attribs[:, :-2], angle])
- rois = paddle.to_tensor(rotated_rois)
- content_feats = self.pooling(feat_maps[batch_ind].unsqueeze(0),
- rois)
- content_feats = content_feats.reshape([content_feats.shape[0], -1])
- geo_feats = feature_embedding(comp_geo_attribs,
- self.node_geo_feat_dim)
- geo_feats = paddle.to_tensor(geo_feats)
- node_feats = paddle.concat([content_feats, geo_feats], axis=-1)
- sorted_dist_inds = np.argsort(distance_matrix, axis=1)
- pivot_local_graphs, pivot_knns = self.generate_local_graphs(
- sorted_dist_inds, node_labels)
- node_feat_batch.append(node_feats)
- node_label_batch.append(node_labels)
- local_graph_batch.append(pivot_local_graphs)
- knn_batch.append(pivot_knns)
- sorted_dist_inds_batch.append(sorted_dist_inds)
- (node_feats, adjacent_matrices, knn_inds, gt_linkage) = \
- self.generate_gcn_input(node_feat_batch,
- node_label_batch,
- local_graph_batch,
- knn_batch,
- sorted_dist_inds_batch)
- return node_feats, adjacent_matrices, knn_inds, gt_linkage
|