123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144 |
- # copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- """
- This code is refer from:
- https://github.com/FangShancheng/ABINet/tree/main/modules
- """
- from __future__ import absolute_import
- from __future__ import division
- from __future__ import print_function
- import paddle
- from paddle import ParamAttr
- from paddle.nn.initializer import KaimingNormal
- import paddle.nn as nn
- import paddle.nn.functional as F
- import numpy as np
- import math
- __all__ = ["ResNet45"]
- def conv1x1(in_planes, out_planes, stride=1):
- return nn.Conv2D(
- in_planes,
- out_planes,
- kernel_size=1,
- stride=1,
- weight_attr=ParamAttr(initializer=KaimingNormal()),
- bias_attr=False)
- def conv3x3(in_channel, out_channel, stride=1):
- return nn.Conv2D(
- in_channel,
- out_channel,
- kernel_size=3,
- stride=stride,
- padding=1,
- weight_attr=ParamAttr(initializer=KaimingNormal()),
- bias_attr=False)
- class BasicBlock(nn.Layer):
- expansion = 1
- def __init__(self, in_channels, channels, stride=1, downsample=None):
- super().__init__()
- self.conv1 = conv1x1(in_channels, channels)
- self.bn1 = nn.BatchNorm2D(channels)
- self.relu = nn.ReLU()
- self.conv2 = conv3x3(channels, channels, stride)
- self.bn2 = nn.BatchNorm2D(channels)
- self.downsample = downsample
- self.stride = stride
- def forward(self, x):
- residual = x
- out = self.conv1(x)
- out = self.bn1(out)
- out = self.relu(out)
- out = self.conv2(out)
- out = self.bn2(out)
- if self.downsample is not None:
- residual = self.downsample(x)
- out += residual
- out = self.relu(out)
- return out
- class ResNet45(nn.Layer):
- def __init__(self,
- in_channels=3,
- block=BasicBlock,
- layers=[3, 4, 6, 6, 3],
- strides=[2, 1, 2, 1, 1]):
- self.inplanes = 32
- super(ResNet45, self).__init__()
- self.conv1 = nn.Conv2D(
- in_channels,
- 32,
- kernel_size=3,
- stride=1,
- padding=1,
- weight_attr=ParamAttr(initializer=KaimingNormal()),
- bias_attr=False)
- self.bn1 = nn.BatchNorm2D(32)
- self.relu = nn.ReLU()
- self.layer1 = self._make_layer(block, 32, layers[0], stride=strides[0])
- self.layer2 = self._make_layer(block, 64, layers[1], stride=strides[1])
- self.layer3 = self._make_layer(block, 128, layers[2], stride=strides[2])
- self.layer4 = self._make_layer(block, 256, layers[3], stride=strides[3])
- self.layer5 = self._make_layer(block, 512, layers[4], stride=strides[4])
- self.out_channels = 512
- def _make_layer(self, block, planes, blocks, stride=1):
- downsample = None
- if stride != 1 or self.inplanes != planes * block.expansion:
- # downsample = True
- downsample = nn.Sequential(
- nn.Conv2D(
- self.inplanes,
- planes * block.expansion,
- kernel_size=1,
- stride=stride,
- weight_attr=ParamAttr(initializer=KaimingNormal()),
- bias_attr=False),
- nn.BatchNorm2D(planes * block.expansion), )
- layers = []
- layers.append(block(self.inplanes, planes, stride, downsample))
- self.inplanes = planes * block.expansion
- for i in range(1, blocks):
- layers.append(block(self.inplanes, planes))
- return nn.Sequential(*layers)
- def forward(self, x):
- x = self.conv1(x)
- x = self.bn1(x)
- x = self.relu(x)
- x = self.layer1(x)
- x = self.layer2(x)
- x = self.layer3(x)
- x = self.layer4(x)
- x = self.layer5(x)
- return x
|