123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269 |
- # copyright (c) 2022 PaddlePaddle Authors. All Rights Reserve.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- """
- This code is refer from:
- https://github.com/hikopensource/DAVAR-Lab-OCR/davarocr/davar_rcg/models/backbones/ResNet32.py
- """
- from __future__ import absolute_import
- from __future__ import division
- from __future__ import print_function
- import paddle.nn as nn
- __all__ = ["ResNet32"]
- conv_weight_attr = nn.initializer.KaimingNormal()
- class ResNet32(nn.Layer):
- """
- Feature Extractor is proposed in FAN Ref [1]
- Ref [1]: Focusing Attention: Towards Accurate Text Recognition in Neural Images ICCV-2017
- """
- def __init__(self, in_channels, out_channels=512):
- """
- Args:
- in_channels (int): input channel
- output_channel (int): output channel
- """
- super(ResNet32, self).__init__()
- self.out_channels = out_channels
- self.ConvNet = ResNet(in_channels, out_channels, BasicBlock, [1, 2, 5, 3])
- def forward(self, inputs):
- """
- Args:
- inputs: input feature
- Returns:
- output feature
- """
- return self.ConvNet(inputs)
- class BasicBlock(nn.Layer):
- """Res-net Basic Block"""
- expansion = 1
- def __init__(self, inplanes, planes,
- stride=1, downsample=None,
- norm_type='BN', **kwargs):
- """
- Args:
- inplanes (int): input channel
- planes (int): channels of the middle feature
- stride (int): stride of the convolution
- downsample (int): type of the down_sample
- norm_type (str): type of the normalization
- **kwargs (None): backup parameter
- """
- super(BasicBlock, self).__init__()
- self.conv1 = self._conv3x3(inplanes, planes)
- self.bn1 = nn.BatchNorm2D(planes)
- self.conv2 = self._conv3x3(planes, planes)
- self.bn2 = nn.BatchNorm2D(planes)
- self.relu = nn.ReLU()
- self.downsample = downsample
- self.stride = stride
- def _conv3x3(self, in_planes, out_planes, stride=1):
- """
- Args:
- in_planes (int): input channel
- out_planes (int): channels of the middle feature
- stride (int): stride of the convolution
- Returns:
- nn.Layer: Conv2D with kernel = 3
- """
- return nn.Conv2D(in_planes, out_planes,
- kernel_size=3, stride=stride,
- padding=1, weight_attr=conv_weight_attr,
- bias_attr=False)
- def forward(self, x):
- residual = x
- out = self.conv1(x)
- out = self.bn1(out)
- out = self.relu(out)
- out = self.conv2(out)
- out = self.bn2(out)
- if self.downsample is not None:
- residual = self.downsample(x)
- out += residual
- out = self.relu(out)
- return out
- class ResNet(nn.Layer):
- """Res-Net network structure"""
- def __init__(self, input_channel,
- output_channel, block, layers):
- """
- Args:
- input_channel (int): input channel
- output_channel (int): output channel
- block (BasicBlock): convolution block
- layers (list): layers of the block
- """
- super(ResNet, self).__init__()
- self.output_channel_block = [int(output_channel / 4),
- int(output_channel / 2),
- output_channel,
- output_channel]
- self.inplanes = int(output_channel / 8)
- self.conv0_1 = nn.Conv2D(input_channel, int(output_channel / 16),
- kernel_size=3, stride=1,
- padding=1,
- weight_attr=conv_weight_attr,
- bias_attr=False)
- self.bn0_1 = nn.BatchNorm2D(int(output_channel / 16))
- self.conv0_2 = nn.Conv2D(int(output_channel / 16), self.inplanes,
- kernel_size=3, stride=1,
- padding=1,
- weight_attr=conv_weight_attr,
- bias_attr=False)
- self.bn0_2 = nn.BatchNorm2D(self.inplanes)
- self.relu = nn.ReLU()
- self.maxpool1 = nn.MaxPool2D(kernel_size=2, stride=2, padding=0)
- self.layer1 = self._make_layer(block,
- self.output_channel_block[0],
- layers[0])
- self.conv1 = nn.Conv2D(self.output_channel_block[0],
- self.output_channel_block[0],
- kernel_size=3, stride=1,
- padding=1,
- weight_attr=conv_weight_attr,
- bias_attr=False)
- self.bn1 = nn.BatchNorm2D(self.output_channel_block[0])
- self.maxpool2 = nn.MaxPool2D(kernel_size=2, stride=2, padding=0)
- self.layer2 = self._make_layer(block,
- self.output_channel_block[1],
- layers[1], stride=1)
- self.conv2 = nn.Conv2D(self.output_channel_block[1],
- self.output_channel_block[1],
- kernel_size=3, stride=1,
- padding=1,
- weight_attr=conv_weight_attr,
- bias_attr=False,)
- self.bn2 = nn.BatchNorm2D(self.output_channel_block[1])
- self.maxpool3 = nn.MaxPool2D(kernel_size=2,
- stride=(2, 1),
- padding=(0, 1))
- self.layer3 = self._make_layer(block, self.output_channel_block[2],
- layers[2], stride=1)
- self.conv3 = nn.Conv2D(self.output_channel_block[2],
- self.output_channel_block[2],
- kernel_size=3, stride=1,
- padding=1,
- weight_attr=conv_weight_attr,
- bias_attr=False)
- self.bn3 = nn.BatchNorm2D(self.output_channel_block[2])
- self.layer4 = self._make_layer(block, self.output_channel_block[3],
- layers[3], stride=1)
- self.conv4_1 = nn.Conv2D(self.output_channel_block[3],
- self.output_channel_block[3],
- kernel_size=2, stride=(2, 1),
- padding=(0, 1),
- weight_attr=conv_weight_attr,
- bias_attr=False)
- self.bn4_1 = nn.BatchNorm2D(self.output_channel_block[3])
- self.conv4_2 = nn.Conv2D(self.output_channel_block[3],
- self.output_channel_block[3],
- kernel_size=2, stride=1,
- padding=0,
- weight_attr=conv_weight_attr,
- bias_attr=False)
- self.bn4_2 = nn.BatchNorm2D(self.output_channel_block[3])
- def _make_layer(self, block, planes, blocks, stride=1):
- """
- Args:
- block (block): convolution block
- planes (int): input channels
- blocks (list): layers of the block
- stride (int): stride of the convolution
- Returns:
- nn.Sequential: the combination of the convolution block
- """
- downsample = None
- if stride != 1 or self.inplanes != planes * block.expansion:
- downsample = nn.Sequential(
- nn.Conv2D(self.inplanes, planes * block.expansion,
- kernel_size=1, stride=stride,
- weight_attr=conv_weight_attr,
- bias_attr=False),
- nn.BatchNorm2D(planes * block.expansion),
- )
- layers = list()
- layers.append(block(self.inplanes, planes, stride, downsample))
- self.inplanes = planes * block.expansion
- for _ in range(1, blocks):
- layers.append(block(self.inplanes, planes))
- return nn.Sequential(*layers)
- def forward(self, x):
- x = self.conv0_1(x)
- x = self.bn0_1(x)
- x = self.relu(x)
- x = self.conv0_2(x)
- x = self.bn0_2(x)
- x = self.relu(x)
- x = self.maxpool1(x)
- x = self.layer1(x)
- x = self.conv1(x)
- x = self.bn1(x)
- x = self.relu(x)
- x = self.maxpool2(x)
- x = self.layer2(x)
- x = self.conv2(x)
- x = self.bn2(x)
- x = self.relu(x)
- x = self.maxpool3(x)
- x = self.layer3(x)
- x = self.conv3(x)
- x = self.bn3(x)
- x = self.relu(x)
- x = self.layer4(x)
- x = self.conv4_1(x)
- x = self.bn4_1(x)
- x = self.relu(x)
- x = self.conv4_2(x)
- x = self.bn4_2(x)
- x = self.relu(x)
- return x
|