123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231 |
- # copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- """
- This code is refer from:
- https://github.com/open-mmlab/mmocr/blob/main/mmocr/models/textrecog/layers/conv_layer.py
- https://github.com/open-mmlab/mmocr/blob/main/mmocr/models/textrecog/backbones/resnet31_ocr.py
- """
- from __future__ import absolute_import
- from __future__ import division
- from __future__ import print_function
- import paddle
- from paddle import ParamAttr
- import paddle.nn as nn
- import paddle.nn.functional as F
- import numpy as np
- __all__ = ["ResNet31"]
- def conv3x3(in_channel, out_channel, stride=1, conv_weight_attr=None):
- return nn.Conv2D(
- in_channel,
- out_channel,
- kernel_size=3,
- stride=stride,
- padding=1,
- weight_attr=conv_weight_attr,
- bias_attr=False)
- class BasicBlock(nn.Layer):
- expansion = 1
- def __init__(self, in_channels, channels, stride=1, downsample=False, conv_weight_attr=None, bn_weight_attr=None):
- super().__init__()
- self.conv1 = conv3x3(in_channels, channels, stride,
- conv_weight_attr=conv_weight_attr)
- self.bn1 = nn.BatchNorm2D(channels, weight_attr=bn_weight_attr)
- self.relu = nn.ReLU()
- self.conv2 = conv3x3(channels, channels,
- conv_weight_attr=conv_weight_attr)
- self.bn2 = nn.BatchNorm2D(channels, weight_attr=bn_weight_attr)
- self.downsample = downsample
- if downsample:
- self.downsample = nn.Sequential(
- nn.Conv2D(
- in_channels,
- channels * self.expansion,
- 1,
- stride,
- weight_attr=conv_weight_attr,
- bias_attr=False),
- nn.BatchNorm2D(channels * self.expansion, weight_attr=bn_weight_attr))
- else:
- self.downsample = nn.Sequential()
- self.stride = stride
- def forward(self, x):
- residual = x
- out = self.conv1(x)
- out = self.bn1(out)
- out = self.relu(out)
- out = self.conv2(out)
- out = self.bn2(out)
- if self.downsample:
- residual = self.downsample(x)
- out += residual
- out = self.relu(out)
- return out
- class ResNet31(nn.Layer):
- '''
- Args:
- in_channels (int): Number of channels of input image tensor.
- layers (list[int]): List of BasicBlock number for each stage.
- channels (list[int]): List of out_channels of Conv2d layer.
- out_indices (None | Sequence[int]): Indices of output stages.
- last_stage_pool (bool): If True, add `MaxPool2d` layer to last stage.
- init_type (None | str): the config to control the initialization.
- '''
- def __init__(self,
- in_channels=3,
- layers=[1, 2, 5, 3],
- channels=[64, 128, 256, 256, 512, 512, 512],
- out_indices=None,
- last_stage_pool=False,
- init_type=None):
- super(ResNet31, self).__init__()
- assert isinstance(in_channels, int)
- assert isinstance(last_stage_pool, bool)
- self.out_indices = out_indices
- self.last_stage_pool = last_stage_pool
- conv_weight_attr = None
- bn_weight_attr = None
-
- if init_type is not None:
- support_dict = ['KaimingNormal']
- assert init_type in support_dict, Exception(
- "resnet31 only support {}".format(support_dict))
- conv_weight_attr = nn.initializer.KaimingNormal()
- bn_weight_attr = ParamAttr(initializer=nn.initializer.Uniform(), learning_rate=1)
- # conv 1 (Conv Conv)
- self.conv1_1 = nn.Conv2D(
- in_channels, channels[0], kernel_size=3, stride=1, padding=1, weight_attr=conv_weight_attr)
- self.bn1_1 = nn.BatchNorm2D(channels[0], weight_attr=bn_weight_attr)
- self.relu1_1 = nn.ReLU()
- self.conv1_2 = nn.Conv2D(
- channels[0], channels[1], kernel_size=3, stride=1, padding=1, weight_attr=conv_weight_attr)
- self.bn1_2 = nn.BatchNorm2D(channels[1], weight_attr=bn_weight_attr)
- self.relu1_2 = nn.ReLU()
- # conv 2 (Max-pooling, Residual block, Conv)
- self.pool2 = nn.MaxPool2D(
- kernel_size=2, stride=2, padding=0, ceil_mode=True)
- self.block2 = self._make_layer(channels[1], channels[2], layers[0],
- conv_weight_attr=conv_weight_attr, bn_weight_attr=bn_weight_attr)
- self.conv2 = nn.Conv2D(
- channels[2], channels[2], kernel_size=3, stride=1, padding=1, weight_attr=conv_weight_attr)
- self.bn2 = nn.BatchNorm2D(channels[2], weight_attr=bn_weight_attr)
- self.relu2 = nn.ReLU()
- # conv 3 (Max-pooling, Residual block, Conv)
- self.pool3 = nn.MaxPool2D(
- kernel_size=2, stride=2, padding=0, ceil_mode=True)
- self.block3 = self._make_layer(channels[2], channels[3], layers[1],
- conv_weight_attr=conv_weight_attr, bn_weight_attr=bn_weight_attr)
- self.conv3 = nn.Conv2D(
- channels[3], channels[3], kernel_size=3, stride=1, padding=1, weight_attr=conv_weight_attr)
- self.bn3 = nn.BatchNorm2D(channels[3], weight_attr=bn_weight_attr)
- self.relu3 = nn.ReLU()
- # conv 4 (Max-pooling, Residual block, Conv)
- self.pool4 = nn.MaxPool2D(
- kernel_size=(2, 1), stride=(2, 1), padding=0, ceil_mode=True)
- self.block4 = self._make_layer(channels[3], channels[4], layers[2],
- conv_weight_attr=conv_weight_attr, bn_weight_attr=bn_weight_attr)
- self.conv4 = nn.Conv2D(
- channels[4], channels[4], kernel_size=3, stride=1, padding=1, weight_attr=conv_weight_attr)
- self.bn4 = nn.BatchNorm2D(channels[4], weight_attr=bn_weight_attr)
- self.relu4 = nn.ReLU()
- # conv 5 ((Max-pooling), Residual block, Conv)
- self.pool5 = None
- if self.last_stage_pool:
- self.pool5 = nn.MaxPool2D(
- kernel_size=2, stride=2, padding=0, ceil_mode=True)
- self.block5 = self._make_layer(channels[4], channels[5], layers[3],
- conv_weight_attr=conv_weight_attr, bn_weight_attr=bn_weight_attr)
- self.conv5 = nn.Conv2D(
- channels[5], channels[5], kernel_size=3, stride=1, padding=1, weight_attr=conv_weight_attr)
- self.bn5 = nn.BatchNorm2D(channels[5], weight_attr=bn_weight_attr)
- self.relu5 = nn.ReLU()
- self.out_channels = channels[-1]
- def _make_layer(self, input_channels, output_channels, blocks, conv_weight_attr=None, bn_weight_attr=None):
- layers = []
- for _ in range(blocks):
- downsample = None
- if input_channels != output_channels:
- downsample = nn.Sequential(
- nn.Conv2D(
- input_channels,
- output_channels,
- kernel_size=1,
- stride=1,
- weight_attr=conv_weight_attr,
- bias_attr=False),
- nn.BatchNorm2D(output_channels, weight_attr=bn_weight_attr))
- layers.append(
- BasicBlock(
- input_channels, output_channels, downsample=downsample,
- conv_weight_attr=conv_weight_attr, bn_weight_attr=bn_weight_attr))
- input_channels = output_channels
- return nn.Sequential(*layers)
- def forward(self, x):
- x = self.conv1_1(x)
- x = self.bn1_1(x)
- x = self.relu1_1(x)
- x = self.conv1_2(x)
- x = self.bn1_2(x)
- x = self.relu1_2(x)
- outs = []
- for i in range(4):
- layer_index = i + 2
- pool_layer = getattr(self, f'pool{layer_index}')
- block_layer = getattr(self, f'block{layer_index}')
- conv_layer = getattr(self, f'conv{layer_index}')
- bn_layer = getattr(self, f'bn{layer_index}')
- relu_layer = getattr(self, f'relu{layer_index}')
- if pool_layer is not None:
- x = pool_layer(x)
- x = block_layer(x)
- x = conv_layer(x)
- x = bn_layer(x)
- x = relu_layer(x)
- outs.append(x)
- if self.out_indices is not None:
- return tuple([outs[i] for i in self.out_indices])
- return x
|