rec_mv1_enhance.py 7.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256
  1. # copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # This code is refer from: https://github.com/PaddlePaddle/PaddleClas/blob/develop/ppcls/arch/backbone/legendary_models/pp_lcnet.py
  15. from __future__ import absolute_import
  16. from __future__ import division
  17. from __future__ import print_function
  18. import math
  19. import numpy as np
  20. import paddle
  21. from paddle import ParamAttr, reshape, transpose
  22. import paddle.nn as nn
  23. import paddle.nn.functional as F
  24. from paddle.nn import Conv2D, BatchNorm, Linear, Dropout
  25. from paddle.nn import AdaptiveAvgPool2D, MaxPool2D, AvgPool2D
  26. from paddle.nn.initializer import KaimingNormal
  27. from paddle.regularizer import L2Decay
  28. from paddle.nn.functional import hardswish, hardsigmoid
  29. class ConvBNLayer(nn.Layer):
  30. def __init__(self,
  31. num_channels,
  32. filter_size,
  33. num_filters,
  34. stride,
  35. padding,
  36. channels=None,
  37. num_groups=1,
  38. act='hard_swish'):
  39. super(ConvBNLayer, self).__init__()
  40. self._conv = Conv2D(
  41. in_channels=num_channels,
  42. out_channels=num_filters,
  43. kernel_size=filter_size,
  44. stride=stride,
  45. padding=padding,
  46. groups=num_groups,
  47. weight_attr=ParamAttr(initializer=KaimingNormal()),
  48. bias_attr=False)
  49. self._batch_norm = BatchNorm(
  50. num_filters,
  51. act=act,
  52. param_attr=ParamAttr(regularizer=L2Decay(0.0)),
  53. bias_attr=ParamAttr(regularizer=L2Decay(0.0)))
  54. def forward(self, inputs):
  55. y = self._conv(inputs)
  56. y = self._batch_norm(y)
  57. return y
  58. class DepthwiseSeparable(nn.Layer):
  59. def __init__(self,
  60. num_channels,
  61. num_filters1,
  62. num_filters2,
  63. num_groups,
  64. stride,
  65. scale,
  66. dw_size=3,
  67. padding=1,
  68. use_se=False):
  69. super(DepthwiseSeparable, self).__init__()
  70. self.use_se = use_se
  71. self._depthwise_conv = ConvBNLayer(
  72. num_channels=num_channels,
  73. num_filters=int(num_filters1 * scale),
  74. filter_size=dw_size,
  75. stride=stride,
  76. padding=padding,
  77. num_groups=int(num_groups * scale))
  78. if use_se:
  79. self._se = SEModule(int(num_filters1 * scale))
  80. self._pointwise_conv = ConvBNLayer(
  81. num_channels=int(num_filters1 * scale),
  82. filter_size=1,
  83. num_filters=int(num_filters2 * scale),
  84. stride=1,
  85. padding=0)
  86. def forward(self, inputs):
  87. y = self._depthwise_conv(inputs)
  88. if self.use_se:
  89. y = self._se(y)
  90. y = self._pointwise_conv(y)
  91. return y
  92. class MobileNetV1Enhance(nn.Layer):
  93. def __init__(self,
  94. in_channels=3,
  95. scale=0.5,
  96. last_conv_stride=1,
  97. last_pool_type='max',
  98. **kwargs):
  99. super().__init__()
  100. self.scale = scale
  101. self.block_list = []
  102. self.conv1 = ConvBNLayer(
  103. num_channels=3,
  104. filter_size=3,
  105. channels=3,
  106. num_filters=int(32 * scale),
  107. stride=2,
  108. padding=1)
  109. conv2_1 = DepthwiseSeparable(
  110. num_channels=int(32 * scale),
  111. num_filters1=32,
  112. num_filters2=64,
  113. num_groups=32,
  114. stride=1,
  115. scale=scale)
  116. self.block_list.append(conv2_1)
  117. conv2_2 = DepthwiseSeparable(
  118. num_channels=int(64 * scale),
  119. num_filters1=64,
  120. num_filters2=128,
  121. num_groups=64,
  122. stride=1,
  123. scale=scale)
  124. self.block_list.append(conv2_2)
  125. conv3_1 = DepthwiseSeparable(
  126. num_channels=int(128 * scale),
  127. num_filters1=128,
  128. num_filters2=128,
  129. num_groups=128,
  130. stride=1,
  131. scale=scale)
  132. self.block_list.append(conv3_1)
  133. conv3_2 = DepthwiseSeparable(
  134. num_channels=int(128 * scale),
  135. num_filters1=128,
  136. num_filters2=256,
  137. num_groups=128,
  138. stride=(2, 1),
  139. scale=scale)
  140. self.block_list.append(conv3_2)
  141. conv4_1 = DepthwiseSeparable(
  142. num_channels=int(256 * scale),
  143. num_filters1=256,
  144. num_filters2=256,
  145. num_groups=256,
  146. stride=1,
  147. scale=scale)
  148. self.block_list.append(conv4_1)
  149. conv4_2 = DepthwiseSeparable(
  150. num_channels=int(256 * scale),
  151. num_filters1=256,
  152. num_filters2=512,
  153. num_groups=256,
  154. stride=(2, 1),
  155. scale=scale)
  156. self.block_list.append(conv4_2)
  157. for _ in range(5):
  158. conv5 = DepthwiseSeparable(
  159. num_channels=int(512 * scale),
  160. num_filters1=512,
  161. num_filters2=512,
  162. num_groups=512,
  163. stride=1,
  164. dw_size=5,
  165. padding=2,
  166. scale=scale,
  167. use_se=False)
  168. self.block_list.append(conv5)
  169. conv5_6 = DepthwiseSeparable(
  170. num_channels=int(512 * scale),
  171. num_filters1=512,
  172. num_filters2=1024,
  173. num_groups=512,
  174. stride=(2, 1),
  175. dw_size=5,
  176. padding=2,
  177. scale=scale,
  178. use_se=True)
  179. self.block_list.append(conv5_6)
  180. conv6 = DepthwiseSeparable(
  181. num_channels=int(1024 * scale),
  182. num_filters1=1024,
  183. num_filters2=1024,
  184. num_groups=1024,
  185. stride=last_conv_stride,
  186. dw_size=5,
  187. padding=2,
  188. use_se=True,
  189. scale=scale)
  190. self.block_list.append(conv6)
  191. self.block_list = nn.Sequential(*self.block_list)
  192. if last_pool_type == 'avg':
  193. self.pool = nn.AvgPool2D(kernel_size=2, stride=2, padding=0)
  194. else:
  195. self.pool = nn.MaxPool2D(kernel_size=2, stride=2, padding=0)
  196. self.out_channels = int(1024 * scale)
  197. def forward(self, inputs):
  198. y = self.conv1(inputs)
  199. y = self.block_list(y)
  200. y = self.pool(y)
  201. return y
  202. class SEModule(nn.Layer):
  203. def __init__(self, channel, reduction=4):
  204. super(SEModule, self).__init__()
  205. self.avg_pool = AdaptiveAvgPool2D(1)
  206. self.conv1 = Conv2D(
  207. in_channels=channel,
  208. out_channels=channel // reduction,
  209. kernel_size=1,
  210. stride=1,
  211. padding=0,
  212. weight_attr=ParamAttr(),
  213. bias_attr=ParamAttr())
  214. self.conv2 = Conv2D(
  215. in_channels=channel // reduction,
  216. out_channels=channel,
  217. kernel_size=1,
  218. stride=1,
  219. padding=0,
  220. weight_attr=ParamAttr(),
  221. bias_attr=ParamAttr())
  222. def forward(self, inputs):
  223. outputs = self.avg_pool(inputs)
  224. outputs = self.conv1(outputs)
  225. outputs = F.relu(outputs)
  226. outputs = self.conv2(outputs)
  227. outputs = hardsigmoid(outputs)
  228. return paddle.multiply(x=inputs, y=outputs)