123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352 |
- # copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- from __future__ import absolute_import
- from __future__ import division
- from __future__ import print_function
- import paddle
- from paddle import ParamAttr
- import paddle.nn as nn
- import paddle.nn.functional as F
- from paddle.vision.ops import DeformConv2D
- from paddle.regularizer import L2Decay
- from paddle.nn.initializer import Normal, Constant, XavierUniform
- __all__ = ["ResNet_vd", "ConvBNLayer", "DeformableConvV2"]
- class DeformableConvV2(nn.Layer):
- def __init__(self,
- in_channels,
- out_channels,
- kernel_size,
- stride=1,
- padding=0,
- dilation=1,
- groups=1,
- weight_attr=None,
- bias_attr=None,
- lr_scale=1,
- regularizer=None,
- skip_quant=False,
- dcn_bias_regularizer=L2Decay(0.),
- dcn_bias_lr_scale=2.):
- super(DeformableConvV2, self).__init__()
- self.offset_channel = 2 * kernel_size**2 * groups
- self.mask_channel = kernel_size**2 * groups
- if bias_attr:
- # in FCOS-DCN head, specifically need learning_rate and regularizer
- dcn_bias_attr = ParamAttr(
- initializer=Constant(value=0),
- regularizer=dcn_bias_regularizer,
- learning_rate=dcn_bias_lr_scale)
- else:
- # in ResNet backbone, do not need bias
- dcn_bias_attr = False
- self.conv_dcn = DeformConv2D(
- in_channels,
- out_channels,
- kernel_size,
- stride=stride,
- padding=(kernel_size - 1) // 2 * dilation,
- dilation=dilation,
- deformable_groups=groups,
- weight_attr=weight_attr,
- bias_attr=dcn_bias_attr)
- if lr_scale == 1 and regularizer is None:
- offset_bias_attr = ParamAttr(initializer=Constant(0.))
- else:
- offset_bias_attr = ParamAttr(
- initializer=Constant(0.),
- learning_rate=lr_scale,
- regularizer=regularizer)
- self.conv_offset = nn.Conv2D(
- in_channels,
- groups * 3 * kernel_size**2,
- kernel_size,
- stride=stride,
- padding=(kernel_size - 1) // 2,
- weight_attr=ParamAttr(initializer=Constant(0.0)),
- bias_attr=offset_bias_attr)
- if skip_quant:
- self.conv_offset.skip_quant = True
- def forward(self, x):
- offset_mask = self.conv_offset(x)
- offset, mask = paddle.split(
- offset_mask,
- num_or_sections=[self.offset_channel, self.mask_channel],
- axis=1)
- mask = F.sigmoid(mask)
- y = self.conv_dcn(x, offset, mask=mask)
- return y
- class ConvBNLayer(nn.Layer):
- def __init__(self,
- in_channels,
- out_channels,
- kernel_size,
- stride=1,
- groups=1,
- dcn_groups=1,
- is_vd_mode=False,
- act=None,
- is_dcn=False):
- super(ConvBNLayer, self).__init__()
- self.is_vd_mode = is_vd_mode
- self._pool2d_avg = nn.AvgPool2D(
- kernel_size=2, stride=2, padding=0, ceil_mode=True)
- if not is_dcn:
- self._conv = nn.Conv2D(
- in_channels=in_channels,
- out_channels=out_channels,
- kernel_size=kernel_size,
- stride=stride,
- padding=(kernel_size - 1) // 2,
- groups=groups,
- bias_attr=False)
- else:
- self._conv = DeformableConvV2(
- in_channels=in_channels,
- out_channels=out_channels,
- kernel_size=kernel_size,
- stride=stride,
- padding=(kernel_size - 1) // 2,
- groups=dcn_groups, #groups,
- bias_attr=False)
- self._batch_norm = nn.BatchNorm(out_channels, act=act)
- def forward(self, inputs):
- if self.is_vd_mode:
- inputs = self._pool2d_avg(inputs)
- y = self._conv(inputs)
- y = self._batch_norm(y)
- return y
- class BottleneckBlock(nn.Layer):
- def __init__(
- self,
- in_channels,
- out_channels,
- stride,
- shortcut=True,
- if_first=False,
- is_dcn=False, ):
- super(BottleneckBlock, self).__init__()
- self.conv0 = ConvBNLayer(
- in_channels=in_channels,
- out_channels=out_channels,
- kernel_size=1,
- act='relu')
- self.conv1 = ConvBNLayer(
- in_channels=out_channels,
- out_channels=out_channels,
- kernel_size=3,
- stride=stride,
- act='relu',
- is_dcn=is_dcn,
- dcn_groups=2)
- self.conv2 = ConvBNLayer(
- in_channels=out_channels,
- out_channels=out_channels * 4,
- kernel_size=1,
- act=None)
- if not shortcut:
- self.short = ConvBNLayer(
- in_channels=in_channels,
- out_channels=out_channels * 4,
- kernel_size=1,
- stride=1,
- is_vd_mode=False if if_first else True)
- self.shortcut = shortcut
- def forward(self, inputs):
- y = self.conv0(inputs)
- conv1 = self.conv1(y)
- conv2 = self.conv2(conv1)
- if self.shortcut:
- short = inputs
- else:
- short = self.short(inputs)
- y = paddle.add(x=short, y=conv2)
- y = F.relu(y)
- return y
- class BasicBlock(nn.Layer):
- def __init__(
- self,
- in_channels,
- out_channels,
- stride,
- shortcut=True,
- if_first=False, ):
- super(BasicBlock, self).__init__()
- self.stride = stride
- self.conv0 = ConvBNLayer(
- in_channels=in_channels,
- out_channels=out_channels,
- kernel_size=3,
- stride=stride,
- act='relu')
- self.conv1 = ConvBNLayer(
- in_channels=out_channels,
- out_channels=out_channels,
- kernel_size=3,
- act=None)
- if not shortcut:
- self.short = ConvBNLayer(
- in_channels=in_channels,
- out_channels=out_channels,
- kernel_size=1,
- stride=1,
- is_vd_mode=False if if_first else True)
- self.shortcut = shortcut
- def forward(self, inputs):
- y = self.conv0(inputs)
- conv1 = self.conv1(y)
- if self.shortcut:
- short = inputs
- else:
- short = self.short(inputs)
- y = paddle.add(x=short, y=conv1)
- y = F.relu(y)
- return y
- class ResNet_vd(nn.Layer):
- def __init__(self,
- in_channels=3,
- layers=50,
- dcn_stage=None,
- out_indices=None,
- **kwargs):
- super(ResNet_vd, self).__init__()
- self.layers = layers
- supported_layers = [18, 34, 50, 101, 152, 200]
- assert layers in supported_layers, \
- "supported layers are {} but input layer is {}".format(
- supported_layers, layers)
- if layers == 18:
- depth = [2, 2, 2, 2]
- elif layers == 34 or layers == 50:
- depth = [3, 4, 6, 3]
- elif layers == 101:
- depth = [3, 4, 23, 3]
- elif layers == 152:
- depth = [3, 8, 36, 3]
- elif layers == 200:
- depth = [3, 12, 48, 3]
- num_channels = [64, 256, 512,
- 1024] if layers >= 50 else [64, 64, 128, 256]
- num_filters = [64, 128, 256, 512]
- self.dcn_stage = dcn_stage if dcn_stage is not None else [
- False, False, False, False
- ]
- self.out_indices = out_indices if out_indices is not None else [
- 0, 1, 2, 3
- ]
- self.conv1_1 = ConvBNLayer(
- in_channels=in_channels,
- out_channels=32,
- kernel_size=3,
- stride=2,
- act='relu')
- self.conv1_2 = ConvBNLayer(
- in_channels=32,
- out_channels=32,
- kernel_size=3,
- stride=1,
- act='relu')
- self.conv1_3 = ConvBNLayer(
- in_channels=32,
- out_channels=64,
- kernel_size=3,
- stride=1,
- act='relu')
- self.pool2d_max = nn.MaxPool2D(kernel_size=3, stride=2, padding=1)
- self.stages = []
- self.out_channels = []
- if layers >= 50:
- for block in range(len(depth)):
- block_list = []
- shortcut = False
- is_dcn = self.dcn_stage[block]
- for i in range(depth[block]):
- bottleneck_block = self.add_sublayer(
- 'bb_%d_%d' % (block, i),
- BottleneckBlock(
- in_channels=num_channels[block]
- if i == 0 else num_filters[block] * 4,
- out_channels=num_filters[block],
- stride=2 if i == 0 and block != 0 else 1,
- shortcut=shortcut,
- if_first=block == i == 0,
- is_dcn=is_dcn))
- shortcut = True
- block_list.append(bottleneck_block)
- if block in self.out_indices:
- self.out_channels.append(num_filters[block] * 4)
- self.stages.append(nn.Sequential(*block_list))
- else:
- for block in range(len(depth)):
- block_list = []
- shortcut = False
- for i in range(depth[block]):
- basic_block = self.add_sublayer(
- 'bb_%d_%d' % (block, i),
- BasicBlock(
- in_channels=num_channels[block]
- if i == 0 else num_filters[block],
- out_channels=num_filters[block],
- stride=2 if i == 0 and block != 0 else 1,
- shortcut=shortcut,
- if_first=block == i == 0))
- shortcut = True
- block_list.append(basic_block)
- if block in self.out_indices:
- self.out_channels.append(num_filters[block])
- self.stages.append(nn.Sequential(*block_list))
- def forward(self, inputs):
- y = self.conv1_1(inputs)
- y = self.conv1_2(y)
- y = self.conv1_3(y)
- y = self.pool2d_max(y)
- out = []
- for i, block in enumerate(self.stages):
- y = block(y)
- if i in self.out_indices:
- out.append(y)
- return out
|