123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236 |
- # copyright (c) 2022 PaddlePaddle Authors. All Rights Reserve.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- from __future__ import absolute_import
- from __future__ import division
- from __future__ import print_function
- import numpy as np
- import paddle
- from paddle import ParamAttr
- import paddle.nn as nn
- import paddle.nn.functional as F
- from paddle.nn import Conv2D, BatchNorm, Linear, Dropout
- from paddle.nn import AdaptiveAvgPool2D, MaxPool2D, AvgPool2D
- from paddle.nn.initializer import Uniform
- import math
- from paddle.vision.ops import DeformConv2D
- from paddle.regularizer import L2Decay
- from paddle.nn.initializer import Normal, Constant, XavierUniform
- from .det_resnet_vd import DeformableConvV2, ConvBNLayer
- class BottleneckBlock(nn.Layer):
- def __init__(self,
- num_channels,
- num_filters,
- stride,
- shortcut=True,
- is_dcn=False):
- super(BottleneckBlock, self).__init__()
- self.conv0 = ConvBNLayer(
- in_channels=num_channels,
- out_channels=num_filters,
- kernel_size=1,
- act="relu", )
- self.conv1 = ConvBNLayer(
- in_channels=num_filters,
- out_channels=num_filters,
- kernel_size=3,
- stride=stride,
- act="relu",
- is_dcn=is_dcn,
- dcn_groups=1, )
- self.conv2 = ConvBNLayer(
- in_channels=num_filters,
- out_channels=num_filters * 4,
- kernel_size=1,
- act=None, )
- if not shortcut:
- self.short = ConvBNLayer(
- in_channels=num_channels,
- out_channels=num_filters * 4,
- kernel_size=1,
- stride=stride, )
- self.shortcut = shortcut
- self._num_channels_out = num_filters * 4
- def forward(self, inputs):
- y = self.conv0(inputs)
- conv1 = self.conv1(y)
- conv2 = self.conv2(conv1)
- if self.shortcut:
- short = inputs
- else:
- short = self.short(inputs)
- y = paddle.add(x=short, y=conv2)
- y = F.relu(y)
- return y
- class BasicBlock(nn.Layer):
- def __init__(self,
- num_channels,
- num_filters,
- stride,
- shortcut=True,
- name=None):
- super(BasicBlock, self).__init__()
- self.stride = stride
- self.conv0 = ConvBNLayer(
- in_channels=num_channels,
- out_channels=num_filters,
- kernel_size=3,
- stride=stride,
- act="relu")
- self.conv1 = ConvBNLayer(
- in_channels=num_filters,
- out_channels=num_filters,
- kernel_size=3,
- act=None)
- if not shortcut:
- self.short = ConvBNLayer(
- in_channels=num_channels,
- out_channels=num_filters,
- kernel_size=1,
- stride=stride)
- self.shortcut = shortcut
- def forward(self, inputs):
- y = self.conv0(inputs)
- conv1 = self.conv1(y)
- if self.shortcut:
- short = inputs
- else:
- short = self.short(inputs)
- y = paddle.add(x=short, y=conv1)
- y = F.relu(y)
- return y
- class ResNet(nn.Layer):
- def __init__(self,
- in_channels=3,
- layers=50,
- out_indices=None,
- dcn_stage=None):
- super(ResNet, self).__init__()
- self.layers = layers
- self.input_image_channel = in_channels
- supported_layers = [18, 34, 50, 101, 152]
- assert layers in supported_layers, \
- "supported layers are {} but input layer is {}".format(
- supported_layers, layers)
- if layers == 18:
- depth = [2, 2, 2, 2]
- elif layers == 34 or layers == 50:
- depth = [3, 4, 6, 3]
- elif layers == 101:
- depth = [3, 4, 23, 3]
- elif layers == 152:
- depth = [3, 8, 36, 3]
- num_channels = [64, 256, 512,
- 1024] if layers >= 50 else [64, 64, 128, 256]
- num_filters = [64, 128, 256, 512]
- self.dcn_stage = dcn_stage if dcn_stage is not None else [
- False, False, False, False
- ]
- self.out_indices = out_indices if out_indices is not None else [
- 0, 1, 2, 3
- ]
- self.conv = ConvBNLayer(
- in_channels=self.input_image_channel,
- out_channels=64,
- kernel_size=7,
- stride=2,
- act="relu", )
- self.pool2d_max = MaxPool2D(
- kernel_size=3,
- stride=2,
- padding=1, )
- self.stages = []
- self.out_channels = []
- if layers >= 50:
- for block in range(len(depth)):
- shortcut = False
- block_list = []
- is_dcn = self.dcn_stage[block]
- for i in range(depth[block]):
- if layers in [101, 152] and block == 2:
- if i == 0:
- conv_name = "res" + str(block + 2) + "a"
- else:
- conv_name = "res" + str(block + 2) + "b" + str(i)
- else:
- conv_name = "res" + str(block + 2) + chr(97 + i)
- bottleneck_block = self.add_sublayer(
- conv_name,
- BottleneckBlock(
- num_channels=num_channels[block]
- if i == 0 else num_filters[block] * 4,
- num_filters=num_filters[block],
- stride=2 if i == 0 and block != 0 else 1,
- shortcut=shortcut,
- is_dcn=is_dcn))
- block_list.append(bottleneck_block)
- shortcut = True
- if block in self.out_indices:
- self.out_channels.append(num_filters[block] * 4)
- self.stages.append(nn.Sequential(*block_list))
- else:
- for block in range(len(depth)):
- shortcut = False
- block_list = []
- for i in range(depth[block]):
- conv_name = "res" + str(block + 2) + chr(97 + i)
- basic_block = self.add_sublayer(
- conv_name,
- BasicBlock(
- num_channels=num_channels[block]
- if i == 0 else num_filters[block],
- num_filters=num_filters[block],
- stride=2 if i == 0 and block != 0 else 1,
- shortcut=shortcut))
- block_list.append(basic_block)
- shortcut = True
- if block in self.out_indices:
- self.out_channels.append(num_filters[block])
- self.stages.append(nn.Sequential(*block_list))
- def forward(self, inputs):
- y = self.conv(inputs)
- y = self.pool2d_max(y)
- out = []
- for i, block in enumerate(self.stages):
- y = block(y)
- if i in self.out_indices:
- out.append(y)
- return out
|