123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268 |
- # copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- from __future__ import absolute_import
- from __future__ import division
- from __future__ import print_function
- import paddle
- from paddle import nn
- import paddle.nn.functional as F
- from paddle import ParamAttr
- __all__ = ['MobileNetV3']
- def make_divisible(v, divisor=8, min_value=None):
- if min_value is None:
- min_value = divisor
- new_v = max(min_value, int(v + divisor / 2) // divisor * divisor)
- if new_v < 0.9 * v:
- new_v += divisor
- return new_v
- class MobileNetV3(nn.Layer):
- def __init__(self,
- in_channels=3,
- model_name='large',
- scale=0.5,
- disable_se=False,
- **kwargs):
- """
- the MobilenetV3 backbone network for detection module.
- Args:
- params(dict): the super parameters for build network
- """
- super(MobileNetV3, self).__init__()
- self.disable_se = disable_se
- if model_name == "large":
- cfg = [
- # k, exp, c, se, nl, s,
- [3, 16, 16, False, 'relu', 1],
- [3, 64, 24, False, 'relu', 2],
- [3, 72, 24, False, 'relu', 1],
- [5, 72, 40, True, 'relu', 2],
- [5, 120, 40, True, 'relu', 1],
- [5, 120, 40, True, 'relu', 1],
- [3, 240, 80, False, 'hardswish', 2],
- [3, 200, 80, False, 'hardswish', 1],
- [3, 184, 80, False, 'hardswish', 1],
- [3, 184, 80, False, 'hardswish', 1],
- [3, 480, 112, True, 'hardswish', 1],
- [3, 672, 112, True, 'hardswish', 1],
- [5, 672, 160, True, 'hardswish', 2],
- [5, 960, 160, True, 'hardswish', 1],
- [5, 960, 160, True, 'hardswish', 1],
- ]
- cls_ch_squeeze = 960
- elif model_name == "small":
- cfg = [
- # k, exp, c, se, nl, s,
- [3, 16, 16, True, 'relu', 2],
- [3, 72, 24, False, 'relu', 2],
- [3, 88, 24, False, 'relu', 1],
- [5, 96, 40, True, 'hardswish', 2],
- [5, 240, 40, True, 'hardswish', 1],
- [5, 240, 40, True, 'hardswish', 1],
- [5, 120, 48, True, 'hardswish', 1],
- [5, 144, 48, True, 'hardswish', 1],
- [5, 288, 96, True, 'hardswish', 2],
- [5, 576, 96, True, 'hardswish', 1],
- [5, 576, 96, True, 'hardswish', 1],
- ]
- cls_ch_squeeze = 576
- else:
- raise NotImplementedError("mode[" + model_name +
- "_model] is not implemented!")
- supported_scale = [0.35, 0.5, 0.75, 1.0, 1.25]
- assert scale in supported_scale, \
- "supported scale are {} but input scale is {}".format(supported_scale, scale)
- inplanes = 16
- # conv1
- self.conv = ConvBNLayer(
- in_channels=in_channels,
- out_channels=make_divisible(inplanes * scale),
- kernel_size=3,
- stride=2,
- padding=1,
- groups=1,
- if_act=True,
- act='hardswish')
- self.stages = []
- self.out_channels = []
- block_list = []
- i = 0
- inplanes = make_divisible(inplanes * scale)
- for (k, exp, c, se, nl, s) in cfg:
- se = se and not self.disable_se
- start_idx = 2 if model_name == 'large' else 0
- if s == 2 and i > start_idx:
- self.out_channels.append(inplanes)
- self.stages.append(nn.Sequential(*block_list))
- block_list = []
- block_list.append(
- ResidualUnit(
- in_channels=inplanes,
- mid_channels=make_divisible(scale * exp),
- out_channels=make_divisible(scale * c),
- kernel_size=k,
- stride=s,
- use_se=se,
- act=nl))
- inplanes = make_divisible(scale * c)
- i += 1
- block_list.append(
- ConvBNLayer(
- in_channels=inplanes,
- out_channels=make_divisible(scale * cls_ch_squeeze),
- kernel_size=1,
- stride=1,
- padding=0,
- groups=1,
- if_act=True,
- act='hardswish'))
- self.stages.append(nn.Sequential(*block_list))
- self.out_channels.append(make_divisible(scale * cls_ch_squeeze))
- for i, stage in enumerate(self.stages):
- self.add_sublayer(sublayer=stage, name="stage{}".format(i))
- def forward(self, x):
- x = self.conv(x)
- out_list = []
- for stage in self.stages:
- x = stage(x)
- out_list.append(x)
- return out_list
- class ConvBNLayer(nn.Layer):
- def __init__(self,
- in_channels,
- out_channels,
- kernel_size,
- stride,
- padding,
- groups=1,
- if_act=True,
- act=None):
- super(ConvBNLayer, self).__init__()
- self.if_act = if_act
- self.act = act
- self.conv = nn.Conv2D(
- in_channels=in_channels,
- out_channels=out_channels,
- kernel_size=kernel_size,
- stride=stride,
- padding=padding,
- groups=groups,
- bias_attr=False)
- self.bn = nn.BatchNorm(num_channels=out_channels, act=None)
- def forward(self, x):
- x = self.conv(x)
- x = self.bn(x)
- if self.if_act:
- if self.act == "relu":
- x = F.relu(x)
- elif self.act == "hardswish":
- x = F.hardswish(x)
- else:
- print("The activation function({}) is selected incorrectly.".
- format(self.act))
- exit()
- return x
- class ResidualUnit(nn.Layer):
- def __init__(self,
- in_channels,
- mid_channels,
- out_channels,
- kernel_size,
- stride,
- use_se,
- act=None):
- super(ResidualUnit, self).__init__()
- self.if_shortcut = stride == 1 and in_channels == out_channels
- self.if_se = use_se
- self.expand_conv = ConvBNLayer(
- in_channels=in_channels,
- out_channels=mid_channels,
- kernel_size=1,
- stride=1,
- padding=0,
- if_act=True,
- act=act)
- self.bottleneck_conv = ConvBNLayer(
- in_channels=mid_channels,
- out_channels=mid_channels,
- kernel_size=kernel_size,
- stride=stride,
- padding=int((kernel_size - 1) // 2),
- groups=mid_channels,
- if_act=True,
- act=act)
- if self.if_se:
- self.mid_se = SEModule(mid_channels)
- self.linear_conv = ConvBNLayer(
- in_channels=mid_channels,
- out_channels=out_channels,
- kernel_size=1,
- stride=1,
- padding=0,
- if_act=False,
- act=None)
- def forward(self, inputs):
- x = self.expand_conv(inputs)
- x = self.bottleneck_conv(x)
- if self.if_se:
- x = self.mid_se(x)
- x = self.linear_conv(x)
- if self.if_shortcut:
- x = paddle.add(inputs, x)
- return x
- class SEModule(nn.Layer):
- def __init__(self, in_channels, reduction=4):
- super(SEModule, self).__init__()
- self.avg_pool = nn.AdaptiveAvgPool2D(1)
- self.conv1 = nn.Conv2D(
- in_channels=in_channels,
- out_channels=in_channels // reduction,
- kernel_size=1,
- stride=1,
- padding=0)
- self.conv2 = nn.Conv2D(
- in_channels=in_channels // reduction,
- out_channels=in_channels,
- kernel_size=1,
- stride=1,
- padding=0)
- def forward(self, inputs):
- outputs = self.avg_pool(inputs)
- outputs = self.conv1(outputs)
- outputs = F.relu(outputs)
- outputs = self.conv2(outputs)
- outputs = F.hardsigmoid(outputs, slope=0.2, offset=0.5)
- return inputs * outputs
|