123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960 |
- # Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- from __future__ import absolute_import
- from __future__ import division
- from __future__ import print_function
- from paddle import nn
- from ppocr.modeling.transforms import build_transform
- from ppocr.modeling.backbones import build_backbone
- from ppocr.modeling.necks import build_neck
- from ppocr.modeling.heads import build_head
- from .base_model import BaseModel
- from ppocr.utils.save_load import load_pretrained_params
- __all__ = ['DistillationModel']
- class DistillationModel(nn.Layer):
- def __init__(self, config):
- """
- the module for OCR distillation.
- args:
- config (dict): the super parameters for module.
- """
- super().__init__()
- self.model_list = []
- self.model_name_list = []
- for key in config["Models"]:
- model_config = config["Models"][key]
- freeze_params = False
- pretrained = None
- if "freeze_params" in model_config:
- freeze_params = model_config.pop("freeze_params")
- if "pretrained" in model_config:
- pretrained = model_config.pop("pretrained")
- model = BaseModel(model_config)
- if pretrained is not None:
- load_pretrained_params(model, pretrained)
- if freeze_params:
- for param in model.parameters():
- param.trainable = False
- self.model_list.append(self.add_sublayer(key, model))
- self.model_name_list.append(key)
- def forward(self, x, data=None):
- result_dict = dict()
- for idx, model_name in enumerate(self.model_name_list):
- result_dict[model_name] = self.model_list[idx](x, data)
- return result_dict
|