123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118 |
- # Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- from __future__ import absolute_import
- from __future__ import division
- from __future__ import print_function
- from paddle import nn
- from ppocr.modeling.transforms import build_transform
- from ppocr.modeling.backbones import build_backbone
- from ppocr.modeling.necks import build_neck
- from ppocr.modeling.heads import build_head
- __all__ = ['BaseModel']
- class BaseModel(nn.Layer):
- def __init__(self, config):
- """
- the module for OCR.
- args:
- config (dict): the super parameters for module.
- """
- super(BaseModel, self).__init__()
- in_channels = config.get('in_channels', 3)
- model_type = config['model_type']
- # build transfrom,
- # for rec, transfrom can be TPS,None
- # for det and cls, transfrom shoule to be None,
- # if you make model differently, you can use transfrom in det and cls
- if 'Transform' not in config or config['Transform'] is None:
- self.use_transform = False
- else:
- self.use_transform = True
- config['Transform']['in_channels'] = in_channels
- self.transform = build_transform(config['Transform'])
- in_channels = self.transform.out_channels
- # build backbone, backbone is need for del, rec and cls
- if 'Backbone' not in config or config['Backbone'] is None:
- self.use_backbone = False
- else:
- self.use_backbone = True
- config["Backbone"]['in_channels'] = in_channels
- self.backbone = build_backbone(config["Backbone"], model_type)
- in_channels = self.backbone.out_channels
- # build neck
- # for rec, neck can be cnn,rnn or reshape(None)
- # for det, neck can be FPN, BIFPN and so on.
- # for cls, neck should be none
- if 'Neck' not in config or config['Neck'] is None:
- self.use_neck = False
- else:
- self.use_neck = True
- config['Neck']['in_channels'] = in_channels
- self.neck = build_neck(config['Neck'])
- in_channels = self.neck.out_channels
- # # build head, head is need for det, rec and cls
- if 'Head' not in config or config['Head'] is None:
- self.use_head = False
- else:
- self.use_head = True
- config["Head"]['in_channels'] = in_channels
- self.head = build_head(config["Head"])
- self.return_all_feats = config.get("return_all_feats", False)
- def forward(self, x, data=None):
- y = dict()
- if self.use_transform:
- x = self.transform(x)
- if self.use_backbone:
- x = self.backbone(x)
- if isinstance(x, dict):
- y.update(x)
- else:
- y["backbone_out"] = x
- final_name = "backbone_out"
- if self.use_neck:
- x = self.neck(x)
- if isinstance(x, dict):
- y.update(x)
- else:
- y["neck_out"] = x
- final_name = "neck_out"
- if self.use_head:
- x = self.head(x, targets=data)
- # for multi head, save ctc neck out for udml
- if isinstance(x, dict) and 'ctc_neck' in x.keys():
- y["neck_out"] = x["ctc_neck"]
- y["head_out"] = x
- elif isinstance(x, dict):
- y.update(x)
- else:
- y["head_out"] = x
- final_name = "head_out"
- if self.return_all_feats:
- if self.training:
- return y
- elif isinstance(x, dict):
- return x
- else:
- return {final_name: x}
- else:
- return x
|