1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071 |
- # Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # The code is refer from: https://github.com/open-mmlab/mmocr/blob/main/mmocr/core/evaluation/kie_metric.py
- from __future__ import absolute_import
- from __future__ import division
- from __future__ import print_function
- import numpy as np
- import paddle
- __all__ = ['KIEMetric']
- class KIEMetric(object):
- def __init__(self, main_indicator='hmean', **kwargs):
- self.main_indicator = main_indicator
- self.reset()
- self.node = []
- self.gt = []
- def __call__(self, preds, batch, **kwargs):
- nodes, _ = preds
- gts, tag = batch[4].squeeze(0), batch[5].tolist()[0]
- gts = gts[:tag[0], :1].reshape([-1])
- self.node.append(nodes.numpy())
- self.gt.append(gts)
- # result = self.compute_f1_score(nodes, gts)
- # self.results.append(result)
- def compute_f1_score(self, preds, gts):
- ignores = [0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 25]
- C = preds.shape[1]
- classes = np.array(sorted(set(range(C)) - set(ignores)))
- hist = np.bincount(
- (gts * C).astype('int64') + preds.argmax(1), minlength=C
- **2).reshape([C, C]).astype('float32')
- diag = np.diag(hist)
- recalls = diag / hist.sum(1).clip(min=1)
- precisions = diag / hist.sum(0).clip(min=1)
- f1 = 2 * recalls * precisions / (recalls + precisions).clip(min=1e-8)
- return f1[classes]
- def combine_results(self, results):
- node = np.concatenate(self.node, 0)
- gts = np.concatenate(self.gt, 0)
- results = self.compute_f1_score(node, gts)
- data = {'hmean': results.mean()}
- return data
- def get_metric(self):
- metrics = self.combine_results(self.results)
- self.reset()
- return metrics
- def reset(self):
- self.results = [] # clear results
- self.node = []
- self.gt = []
|