12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034 |
- # copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import math
- import cv2
- import numpy as np
- from skimage.morphology._skeletonize import thin
- from ppocr.utils.e2e_utils.extract_textpoint_fast import sort_and_expand_with_direction_v2
- __all__ = ['PGProcessTrain']
- class PGProcessTrain(object):
- def __init__(self,
- character_dict_path,
- max_text_length,
- max_text_nums,
- tcl_len,
- batch_size=14,
- use_resize=True,
- use_random_crop=False,
- min_crop_size=24,
- min_text_size=4,
- max_text_size=512,
- point_gather_mode=None,
- **kwargs):
- self.tcl_len = tcl_len
- self.max_text_length = max_text_length
- self.max_text_nums = max_text_nums
- self.batch_size = batch_size
- if use_random_crop is True:
- self.min_crop_size = min_crop_size
- self.use_random_crop = use_random_crop
- self.min_text_size = min_text_size
- self.max_text_size = max_text_size
- self.use_resize = use_resize
- self.point_gather_mode = point_gather_mode
- self.Lexicon_Table = self.get_dict(character_dict_path)
- self.pad_num = len(self.Lexicon_Table)
- self.img_id = 0
- def get_dict(self, character_dict_path):
- character_str = ""
- with open(character_dict_path, "rb") as fin:
- lines = fin.readlines()
- for line in lines:
- line = line.decode('utf-8').strip("\n").strip("\r\n")
- character_str += line
- dict_character = list(character_str)
- return dict_character
- def quad_area(self, poly):
- """
- compute area of a polygon
- :param poly:
- :return:
- """
- edge = [(poly[1][0] - poly[0][0]) * (poly[1][1] + poly[0][1]),
- (poly[2][0] - poly[1][0]) * (poly[2][1] + poly[1][1]),
- (poly[3][0] - poly[2][0]) * (poly[3][1] + poly[2][1]),
- (poly[0][0] - poly[3][0]) * (poly[0][1] + poly[3][1])]
- return np.sum(edge) / 2.
- def gen_quad_from_poly(self, poly):
- """
- Generate min area quad from poly.
- """
- point_num = poly.shape[0]
- min_area_quad = np.zeros((4, 2), dtype=np.float32)
- rect = cv2.minAreaRect(poly.astype(
- np.int32)) # (center (x,y), (width, height), angle of rotation)
- box = np.array(cv2.boxPoints(rect))
- first_point_idx = 0
- min_dist = 1e4
- for i in range(4):
- dist = np.linalg.norm(box[(i + 0) % 4] - poly[0]) + \
- np.linalg.norm(box[(i + 1) % 4] - poly[point_num // 2 - 1]) + \
- np.linalg.norm(box[(i + 2) % 4] - poly[point_num // 2]) + \
- np.linalg.norm(box[(i + 3) % 4] - poly[-1])
- if dist < min_dist:
- min_dist = dist
- first_point_idx = i
- for i in range(4):
- min_area_quad[i] = box[(first_point_idx + i) % 4]
- return min_area_quad
- def check_and_validate_polys(self, polys, tags, im_size):
- """
- check so that the text poly is in the same direction,
- and also filter some invalid polygons
- :param polys:
- :param tags:
- :return:
- """
- (h, w) = im_size
- if polys.shape[0] == 0:
- return polys, np.array([]), np.array([])
- polys[:, :, 0] = np.clip(polys[:, :, 0], 0, w - 1)
- polys[:, :, 1] = np.clip(polys[:, :, 1], 0, h - 1)
- validated_polys = []
- validated_tags = []
- hv_tags = []
- for poly, tag in zip(polys, tags):
- quad = self.gen_quad_from_poly(poly)
- p_area = self.quad_area(quad)
- if abs(p_area) < 1:
- print('invalid poly')
- continue
- if p_area > 0:
- if tag == False:
- print('poly in wrong direction')
- tag = True # reversed cases should be ignore
- poly = poly[(0, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2,
- 1), :]
- quad = quad[(0, 3, 2, 1), :]
- len_w = np.linalg.norm(quad[0] - quad[1]) + np.linalg.norm(quad[3] -
- quad[2])
- len_h = np.linalg.norm(quad[0] - quad[3]) + np.linalg.norm(quad[1] -
- quad[2])
- hv_tag = 1
- if len_w * 2.0 < len_h:
- hv_tag = 0
- validated_polys.append(poly)
- validated_tags.append(tag)
- hv_tags.append(hv_tag)
- return np.array(validated_polys), np.array(validated_tags), np.array(
- hv_tags)
- def crop_area(self,
- im,
- polys,
- tags,
- hv_tags,
- txts,
- crop_background=False,
- max_tries=25):
- """
- make random crop from the input image
- :param im:
- :param polys: [b,4,2]
- :param tags:
- :param crop_background:
- :param max_tries: 50 -> 25
- :return:
- """
- h, w, _ = im.shape
- pad_h = h // 10
- pad_w = w // 10
- h_array = np.zeros((h + pad_h * 2), dtype=np.int32)
- w_array = np.zeros((w + pad_w * 2), dtype=np.int32)
- for poly in polys:
- poly = np.round(poly, decimals=0).astype(np.int32)
- minx = np.min(poly[:, 0])
- maxx = np.max(poly[:, 0])
- w_array[minx + pad_w:maxx + pad_w] = 1
- miny = np.min(poly[:, 1])
- maxy = np.max(poly[:, 1])
- h_array[miny + pad_h:maxy + pad_h] = 1
- # ensure the cropped area not across a text
- h_axis = np.where(h_array == 0)[0]
- w_axis = np.where(w_array == 0)[0]
- if len(h_axis) == 0 or len(w_axis) == 0:
- return im, polys, tags, hv_tags, txts
- for i in range(max_tries):
- xx = np.random.choice(w_axis, size=2)
- xmin = np.min(xx) - pad_w
- xmax = np.max(xx) - pad_w
- xmin = np.clip(xmin, 0, w - 1)
- xmax = np.clip(xmax, 0, w - 1)
- yy = np.random.choice(h_axis, size=2)
- ymin = np.min(yy) - pad_h
- ymax = np.max(yy) - pad_h
- ymin = np.clip(ymin, 0, h - 1)
- ymax = np.clip(ymax, 0, h - 1)
- if xmax - xmin < self.min_crop_size or \
- ymax - ymin < self.min_crop_size:
- continue
- if polys.shape[0] != 0:
- poly_axis_in_area = (polys[:, :, 0] >= xmin) & (polys[:, :, 0] <= xmax) \
- & (polys[:, :, 1] >= ymin) & (polys[:, :, 1] <= ymax)
- selected_polys = np.where(
- np.sum(poly_axis_in_area, axis=1) == 4)[0]
- else:
- selected_polys = []
- if len(selected_polys) == 0:
- # no text in this area
- if crop_background:
- txts_tmp = []
- for selected_poly in selected_polys:
- txts_tmp.append(txts[selected_poly])
- txts = txts_tmp
- return im[ymin: ymax + 1, xmin: xmax + 1, :], \
- polys[selected_polys], tags[selected_polys], hv_tags[selected_polys], txts
- else:
- continue
- im = im[ymin:ymax + 1, xmin:xmax + 1, :]
- polys = polys[selected_polys]
- tags = tags[selected_polys]
- hv_tags = hv_tags[selected_polys]
- txts_tmp = []
- for selected_poly in selected_polys:
- txts_tmp.append(txts[selected_poly])
- txts = txts_tmp
- polys[:, :, 0] -= xmin
- polys[:, :, 1] -= ymin
- return im, polys, tags, hv_tags, txts
- return im, polys, tags, hv_tags, txts
- def fit_and_gather_tcl_points_v2(self,
- min_area_quad,
- poly,
- max_h,
- max_w,
- fixed_point_num=64,
- img_id=0,
- reference_height=3):
- """
- Find the center point of poly as key_points, then fit and gather.
- """
- key_point_xys = []
- point_num = poly.shape[0]
- for idx in range(point_num // 2):
- center_point = (poly[idx] + poly[point_num - 1 - idx]) / 2.0
- key_point_xys.append(center_point)
- tmp_image = np.zeros(
- shape=(
- max_h,
- max_w, ), dtype='float32')
- cv2.polylines(tmp_image, [np.array(key_point_xys).astype('int32')],
- False, 1.0)
- ys, xs = np.where(tmp_image > 0)
- xy_text = np.array(list(zip(xs, ys)), dtype='float32')
- left_center_pt = (
- (min_area_quad[0] - min_area_quad[1]) / 2.0).reshape(1, 2)
- right_center_pt = (
- (min_area_quad[1] - min_area_quad[2]) / 2.0).reshape(1, 2)
- proj_unit_vec = (right_center_pt - left_center_pt) / (
- np.linalg.norm(right_center_pt - left_center_pt) + 1e-6)
- proj_unit_vec_tile = np.tile(proj_unit_vec,
- (xy_text.shape[0], 1)) # (n, 2)
- left_center_pt_tile = np.tile(left_center_pt,
- (xy_text.shape[0], 1)) # (n, 2)
- xy_text_to_left_center = xy_text - left_center_pt_tile
- proj_value = np.sum(xy_text_to_left_center * proj_unit_vec_tile, axis=1)
- xy_text = xy_text[np.argsort(proj_value)]
- # convert to np and keep the num of point not greater then fixed_point_num
- pos_info = np.array(xy_text).reshape(-1, 2)[:, ::-1] # xy-> yx
- point_num = len(pos_info)
- if point_num > fixed_point_num:
- keep_ids = [
- int((point_num * 1.0 / fixed_point_num) * x)
- for x in range(fixed_point_num)
- ]
- pos_info = pos_info[keep_ids, :]
- keep = int(min(len(pos_info), fixed_point_num))
- if np.random.rand() < 0.2 and reference_height >= 3:
- dl = (np.random.rand(keep) - 0.5) * reference_height * 0.3
- random_float = np.array([1, 0]).reshape([1, 2]) * dl.reshape(
- [keep, 1])
- pos_info += random_float
- pos_info[:, 0] = np.clip(pos_info[:, 0], 0, max_h - 1)
- pos_info[:, 1] = np.clip(pos_info[:, 1], 0, max_w - 1)
- # padding to fixed length
- pos_l = np.zeros((self.tcl_len, 3), dtype=np.int32)
- pos_l[:, 0] = np.ones((self.tcl_len, )) * img_id
- pos_m = np.zeros((self.tcl_len, 1), dtype=np.float32)
- pos_l[:keep, 1:] = np.round(pos_info).astype(np.int32)
- pos_m[:keep] = 1.0
- return pos_l, pos_m
- def fit_and_gather_tcl_points_v3(self,
- min_area_quad,
- poly,
- max_h,
- max_w,
- fixed_point_num=64,
- img_id=0,
- reference_height=3):
- """
- Find the center point of poly as key_points, then fit and gather.
- """
- det_mask = np.zeros((int(max_h / self.ds_ratio),
- int(max_w / self.ds_ratio))).astype(np.float32)
- # score_big_map
- cv2.fillPoly(det_mask,
- np.round(poly / self.ds_ratio).astype(np.int32), 1.0)
- det_mask = cv2.resize(
- det_mask, dsize=None, fx=self.ds_ratio, fy=self.ds_ratio)
- det_mask = np.array(det_mask > 1e-3, dtype='float32')
- f_direction = self.f_direction
- skeleton_map = thin(det_mask.astype(np.uint8))
- instance_count, instance_label_map = cv2.connectedComponents(
- skeleton_map.astype(np.uint8), connectivity=8)
- ys, xs = np.where(instance_label_map == 1)
- pos_list = list(zip(ys, xs))
- if len(pos_list) < 3:
- return None
- pos_list_sorted = sort_and_expand_with_direction_v2(
- pos_list, f_direction, det_mask)
- pos_list_sorted = np.array(pos_list_sorted)
- length = len(pos_list_sorted) - 1
- insert_num = 0
- for index in range(length):
- stride_y = np.abs(pos_list_sorted[index + insert_num][0] -
- pos_list_sorted[index + 1 + insert_num][0])
- stride_x = np.abs(pos_list_sorted[index + insert_num][1] -
- pos_list_sorted[index + 1 + insert_num][1])
- max_points = int(max(stride_x, stride_y))
- stride = (pos_list_sorted[index + insert_num] -
- pos_list_sorted[index + 1 + insert_num]) / (max_points)
- insert_num_temp = max_points - 1
- for i in range(int(insert_num_temp)):
- insert_value = pos_list_sorted[index + insert_num] - (i + 1
- ) * stride
- insert_index = index + i + 1 + insert_num
- pos_list_sorted = np.insert(
- pos_list_sorted, insert_index, insert_value, axis=0)
- insert_num += insert_num_temp
- pos_info = np.array(pos_list_sorted).reshape(-1, 2).astype(
- np.float32) # xy-> yx
- point_num = len(pos_info)
- if point_num > fixed_point_num:
- keep_ids = [
- int((point_num * 1.0 / fixed_point_num) * x)
- for x in range(fixed_point_num)
- ]
- pos_info = pos_info[keep_ids, :]
- keep = int(min(len(pos_info), fixed_point_num))
- reference_width = (np.abs(poly[0, 0, 0] - poly[-1, 1, 0]) +
- np.abs(poly[0, 3, 0] - poly[-1, 2, 0])) // 2
- if np.random.rand() < 1:
- dh = (np.random.rand(keep) - 0.5) * reference_height
- offset = np.random.rand() - 0.5
- dw = np.array([[0, offset * reference_width * 0.2]])
- random_float_h = np.array([1, 0]).reshape([1, 2]) * dh.reshape(
- [keep, 1])
- random_float_w = dw.repeat(keep, axis=0)
- pos_info += random_float_h
- pos_info += random_float_w
- pos_info[:, 0] = np.clip(pos_info[:, 0], 0, max_h - 1)
- pos_info[:, 1] = np.clip(pos_info[:, 1], 0, max_w - 1)
- # padding to fixed length
- pos_l = np.zeros((self.tcl_len, 3), dtype=np.int32)
- pos_l[:, 0] = np.ones((self.tcl_len, )) * img_id
- pos_m = np.zeros((self.tcl_len, 1), dtype=np.float32)
- pos_l[:keep, 1:] = np.round(pos_info).astype(np.int32)
- pos_m[:keep] = 1.0
- return pos_l, pos_m
- def generate_direction_map(self, poly_quads, n_char, direction_map):
- """
- """
- width_list = []
- height_list = []
- for quad in poly_quads:
- quad_w = (np.linalg.norm(quad[0] - quad[1]) +
- np.linalg.norm(quad[2] - quad[3])) / 2.0
- quad_h = (np.linalg.norm(quad[0] - quad[3]) +
- np.linalg.norm(quad[2] - quad[1])) / 2.0
- width_list.append(quad_w)
- height_list.append(quad_h)
- norm_width = max(sum(width_list) / n_char, 1.0)
- average_height = max(sum(height_list) / len(height_list), 1.0)
- k = 1
- for quad in poly_quads:
- direct_vector_full = (
- (quad[1] + quad[2]) - (quad[0] + quad[3])) / 2.0
- direct_vector = direct_vector_full / (
- np.linalg.norm(direct_vector_full) + 1e-6) * norm_width
- direction_label = tuple(
- map(float,
- [direct_vector[0], direct_vector[1], 1.0 / average_height]))
- cv2.fillPoly(direction_map,
- quad.round().astype(np.int32)[np.newaxis, :, :],
- direction_label)
- k += 1
- return direction_map
- def calculate_average_height(self, poly_quads):
- """
- """
- height_list = []
- for quad in poly_quads:
- quad_h = (np.linalg.norm(quad[0] - quad[3]) +
- np.linalg.norm(quad[2] - quad[1])) / 2.0
- height_list.append(quad_h)
- average_height = max(sum(height_list) / len(height_list), 1.0)
- return average_height
- def generate_tcl_ctc_label(self,
- h,
- w,
- polys,
- tags,
- text_strs,
- ds_ratio,
- tcl_ratio=0.3,
- shrink_ratio_of_width=0.15):
- """
- Generate polygon.
- """
- self.ds_ratio = ds_ratio
- score_map_big = np.zeros(
- (
- h,
- w, ), dtype=np.float32)
- h, w = int(h * ds_ratio), int(w * ds_ratio)
- polys = polys * ds_ratio
- score_map = np.zeros(
- (
- h,
- w, ), dtype=np.float32)
- score_label_map = np.zeros(
- (
- h,
- w, ), dtype=np.float32)
- tbo_map = np.zeros((h, w, 5), dtype=np.float32)
- training_mask = np.ones(
- (
- h,
- w, ), dtype=np.float32)
- direction_map = np.ones((h, w, 3)) * np.array([0, 0, 1]).reshape(
- [1, 1, 3]).astype(np.float32)
- label_idx = 0
- score_label_map_text_label_list = []
- pos_list, pos_mask, label_list = [], [], []
- for poly_idx, poly_tag in enumerate(zip(polys, tags)):
- poly = poly_tag[0]
- tag = poly_tag[1]
- # generate min_area_quad
- min_area_quad, center_point = self.gen_min_area_quad_from_poly(poly)
- min_area_quad_h = 0.5 * (
- np.linalg.norm(min_area_quad[0] - min_area_quad[3]) +
- np.linalg.norm(min_area_quad[1] - min_area_quad[2]))
- min_area_quad_w = 0.5 * (
- np.linalg.norm(min_area_quad[0] - min_area_quad[1]) +
- np.linalg.norm(min_area_quad[2] - min_area_quad[3]))
- if min(min_area_quad_h, min_area_quad_w) < self.min_text_size * ds_ratio \
- or min(min_area_quad_h, min_area_quad_w) > self.max_text_size * ds_ratio:
- continue
- if tag:
- cv2.fillPoly(training_mask,
- poly.astype(np.int32)[np.newaxis, :, :], 0.15)
- else:
- text_label = text_strs[poly_idx]
- text_label = self.prepare_text_label(text_label,
- self.Lexicon_Table)
- text_label_index_list = [[self.Lexicon_Table.index(c_)]
- for c_ in text_label
- if c_ in self.Lexicon_Table]
- if len(text_label_index_list) < 1:
- continue
- tcl_poly = self.poly2tcl(poly, tcl_ratio)
- tcl_quads = self.poly2quads(tcl_poly)
- poly_quads = self.poly2quads(poly)
- stcl_quads, quad_index = self.shrink_poly_along_width(
- tcl_quads,
- shrink_ratio_of_width=shrink_ratio_of_width,
- expand_height_ratio=1.0 / tcl_ratio)
- cv2.fillPoly(score_map,
- np.round(stcl_quads).astype(np.int32), 1.0)
- cv2.fillPoly(score_map_big,
- np.round(stcl_quads / ds_ratio).astype(np.int32),
- 1.0)
- for idx, quad in enumerate(stcl_quads):
- quad_mask = np.zeros((h, w), dtype=np.float32)
- quad_mask = cv2.fillPoly(
- quad_mask,
- np.round(quad[np.newaxis, :, :]).astype(np.int32), 1.0)
- tbo_map = self.gen_quad_tbo(poly_quads[quad_index[idx]],
- quad_mask, tbo_map)
- # score label map and score_label_map_text_label_list for refine
- if label_idx == 0:
- text_pos_list_ = [[len(self.Lexicon_Table)], ]
- score_label_map_text_label_list.append(text_pos_list_)
- label_idx += 1
- cv2.fillPoly(score_label_map,
- np.round(poly_quads).astype(np.int32), label_idx)
- score_label_map_text_label_list.append(text_label_index_list)
- # direction info, fix-me
- n_char = len(text_label_index_list)
- direction_map = self.generate_direction_map(poly_quads, n_char,
- direction_map)
- # pos info
- average_shrink_height = self.calculate_average_height(
- stcl_quads)
- if self.point_gather_mode == 'align':
- self.f_direction = direction_map[:, :, :-1].copy()
- pos_res = self.fit_and_gather_tcl_points_v3(
- min_area_quad,
- stcl_quads,
- max_h=h,
- max_w=w,
- fixed_point_num=64,
- img_id=self.img_id,
- reference_height=average_shrink_height)
- if pos_res is None:
- continue
- pos_l, pos_m = pos_res[0], pos_res[1]
- else:
- pos_l, pos_m = self.fit_and_gather_tcl_points_v2(
- min_area_quad,
- poly,
- max_h=h,
- max_w=w,
- fixed_point_num=64,
- img_id=self.img_id,
- reference_height=average_shrink_height)
- label_l = text_label_index_list
- if len(text_label_index_list) < 2:
- continue
- pos_list.append(pos_l)
- pos_mask.append(pos_m)
- label_list.append(label_l)
- # use big score_map for smooth tcl lines
- score_map_big_resized = cv2.resize(
- score_map_big, dsize=None, fx=ds_ratio, fy=ds_ratio)
- score_map = np.array(score_map_big_resized > 1e-3, dtype='float32')
- return score_map, score_label_map, tbo_map, direction_map, training_mask, \
- pos_list, pos_mask, label_list, score_label_map_text_label_list
- def adjust_point(self, poly):
- """
- adjust point order.
- """
- point_num = poly.shape[0]
- if point_num == 4:
- len_1 = np.linalg.norm(poly[0] - poly[1])
- len_2 = np.linalg.norm(poly[1] - poly[2])
- len_3 = np.linalg.norm(poly[2] - poly[3])
- len_4 = np.linalg.norm(poly[3] - poly[0])
- if (len_1 + len_3) * 1.5 < (len_2 + len_4):
- poly = poly[[1, 2, 3, 0], :]
- elif point_num > 4:
- vector_1 = poly[0] - poly[1]
- vector_2 = poly[1] - poly[2]
- cos_theta = np.dot(vector_1, vector_2) / (
- np.linalg.norm(vector_1) * np.linalg.norm(vector_2) + 1e-6)
- theta = np.arccos(np.round(cos_theta, decimals=4))
- if abs(theta) > (70 / 180 * math.pi):
- index = list(range(1, point_num)) + [0]
- poly = poly[np.array(index), :]
- return poly
- def gen_min_area_quad_from_poly(self, poly):
- """
- Generate min area quad from poly.
- """
- point_num = poly.shape[0]
- min_area_quad = np.zeros((4, 2), dtype=np.float32)
- if point_num == 4:
- min_area_quad = poly
- center_point = np.sum(poly, axis=0) / 4
- else:
- rect = cv2.minAreaRect(poly.astype(
- np.int32)) # (center (x,y), (width, height), angle of rotation)
- center_point = rect[0]
- box = np.array(cv2.boxPoints(rect))
- first_point_idx = 0
- min_dist = 1e4
- for i in range(4):
- dist = np.linalg.norm(box[(i + 0) % 4] - poly[0]) + \
- np.linalg.norm(box[(i + 1) % 4] - poly[point_num // 2 - 1]) + \
- np.linalg.norm(box[(i + 2) % 4] - poly[point_num // 2]) + \
- np.linalg.norm(box[(i + 3) % 4] - poly[-1])
- if dist < min_dist:
- min_dist = dist
- first_point_idx = i
- for i in range(4):
- min_area_quad[i] = box[(first_point_idx + i) % 4]
- return min_area_quad, center_point
- def shrink_quad_along_width(self,
- quad,
- begin_width_ratio=0.,
- end_width_ratio=1.):
- """
- Generate shrink_quad_along_width.
- """
- ratio_pair = np.array(
- [[begin_width_ratio], [end_width_ratio]], dtype=np.float32)
- p0_1 = quad[0] + (quad[1] - quad[0]) * ratio_pair
- p3_2 = quad[3] + (quad[2] - quad[3]) * ratio_pair
- return np.array([p0_1[0], p0_1[1], p3_2[1], p3_2[0]])
- def shrink_poly_along_width(self,
- quads,
- shrink_ratio_of_width,
- expand_height_ratio=1.0):
- """
- shrink poly with given length.
- """
- upper_edge_list = []
- def get_cut_info(edge_len_list, cut_len):
- for idx, edge_len in enumerate(edge_len_list):
- cut_len -= edge_len
- if cut_len <= 0.000001:
- ratio = (cut_len + edge_len_list[idx]) / edge_len_list[idx]
- return idx, ratio
- for quad in quads:
- upper_edge_len = np.linalg.norm(quad[0] - quad[1])
- upper_edge_list.append(upper_edge_len)
- # length of left edge and right edge.
- left_length = np.linalg.norm(quads[0][0] - quads[0][
- 3]) * expand_height_ratio
- right_length = np.linalg.norm(quads[-1][1] - quads[-1][
- 2]) * expand_height_ratio
- shrink_length = min(left_length, right_length,
- sum(upper_edge_list)) * shrink_ratio_of_width
- # shrinking length
- upper_len_left = shrink_length
- upper_len_right = sum(upper_edge_list) - shrink_length
- left_idx, left_ratio = get_cut_info(upper_edge_list, upper_len_left)
- left_quad = self.shrink_quad_along_width(
- quads[left_idx], begin_width_ratio=left_ratio, end_width_ratio=1)
- right_idx, right_ratio = get_cut_info(upper_edge_list, upper_len_right)
- right_quad = self.shrink_quad_along_width(
- quads[right_idx], begin_width_ratio=0, end_width_ratio=right_ratio)
- out_quad_list = []
- if left_idx == right_idx:
- out_quad_list.append(
- [left_quad[0], right_quad[1], right_quad[2], left_quad[3]])
- else:
- out_quad_list.append(left_quad)
- for idx in range(left_idx + 1, right_idx):
- out_quad_list.append(quads[idx])
- out_quad_list.append(right_quad)
- return np.array(out_quad_list), list(range(left_idx, right_idx + 1))
- def prepare_text_label(self, label_str, Lexicon_Table):
- """
- Prepare text lablel by given Lexicon_Table.
- """
- if len(Lexicon_Table) == 36:
- return label_str.lower()
- else:
- return label_str
- def vector_angle(self, A, B):
- """
- Calculate the angle between vector AB and x-axis positive direction.
- """
- AB = np.array([B[1] - A[1], B[0] - A[0]])
- return np.arctan2(*AB)
- def theta_line_cross_point(self, theta, point):
- """
- Calculate the line through given point and angle in ax + by + c =0 form.
- """
- x, y = point
- cos = np.cos(theta)
- sin = np.sin(theta)
- return [sin, -cos, cos * y - sin * x]
- def line_cross_two_point(self, A, B):
- """
- Calculate the line through given point A and B in ax + by + c =0 form.
- """
- angle = self.vector_angle(A, B)
- return self.theta_line_cross_point(angle, A)
- def average_angle(self, poly):
- """
- Calculate the average angle between left and right edge in given poly.
- """
- p0, p1, p2, p3 = poly
- angle30 = self.vector_angle(p3, p0)
- angle21 = self.vector_angle(p2, p1)
- return (angle30 + angle21) / 2
- def line_cross_point(self, line1, line2):
- """
- line1 and line2 in 0=ax+by+c form, compute the cross point of line1 and line2
- """
- a1, b1, c1 = line1
- a2, b2, c2 = line2
- d = a1 * b2 - a2 * b1
- if d == 0:
- print('Cross point does not exist')
- return np.array([0, 0], dtype=np.float32)
- else:
- x = (b1 * c2 - b2 * c1) / d
- y = (a2 * c1 - a1 * c2) / d
- return np.array([x, y], dtype=np.float32)
- def quad2tcl(self, poly, ratio):
- """
- Generate center line by poly clock-wise point. (4, 2)
- """
- ratio_pair = np.array(
- [[0.5 - ratio / 2], [0.5 + ratio / 2]], dtype=np.float32)
- p0_3 = poly[0] + (poly[3] - poly[0]) * ratio_pair
- p1_2 = poly[1] + (poly[2] - poly[1]) * ratio_pair
- return np.array([p0_3[0], p1_2[0], p1_2[1], p0_3[1]])
- def poly2tcl(self, poly, ratio):
- """
- Generate center line by poly clock-wise point.
- """
- ratio_pair = np.array(
- [[0.5 - ratio / 2], [0.5 + ratio / 2]], dtype=np.float32)
- tcl_poly = np.zeros_like(poly)
- point_num = poly.shape[0]
- for idx in range(point_num // 2):
- point_pair = poly[idx] + (poly[point_num - 1 - idx] - poly[idx]
- ) * ratio_pair
- tcl_poly[idx] = point_pair[0]
- tcl_poly[point_num - 1 - idx] = point_pair[1]
- return tcl_poly
- def gen_quad_tbo(self, quad, tcl_mask, tbo_map):
- """
- Generate tbo_map for give quad.
- """
- # upper and lower line function: ax + by + c = 0;
- up_line = self.line_cross_two_point(quad[0], quad[1])
- lower_line = self.line_cross_two_point(quad[3], quad[2])
- quad_h = 0.5 * (np.linalg.norm(quad[0] - quad[3]) +
- np.linalg.norm(quad[1] - quad[2]))
- quad_w = 0.5 * (np.linalg.norm(quad[0] - quad[1]) +
- np.linalg.norm(quad[2] - quad[3]))
- # average angle of left and right line.
- angle = self.average_angle(quad)
- xy_in_poly = np.argwhere(tcl_mask == 1)
- for y, x in xy_in_poly:
- point = (x, y)
- line = self.theta_line_cross_point(angle, point)
- cross_point_upper = self.line_cross_point(up_line, line)
- cross_point_lower = self.line_cross_point(lower_line, line)
- ##FIX, offset reverse
- upper_offset_x, upper_offset_y = cross_point_upper - point
- lower_offset_x, lower_offset_y = cross_point_lower - point
- tbo_map[y, x, 0] = upper_offset_y
- tbo_map[y, x, 1] = upper_offset_x
- tbo_map[y, x, 2] = lower_offset_y
- tbo_map[y, x, 3] = lower_offset_x
- tbo_map[y, x, 4] = 1.0 / max(min(quad_h, quad_w), 1.0) * 2
- return tbo_map
- def poly2quads(self, poly):
- """
- Split poly into quads.
- """
- quad_list = []
- point_num = poly.shape[0]
- # point pair
- point_pair_list = []
- for idx in range(point_num // 2):
- point_pair = [poly[idx], poly[point_num - 1 - idx]]
- point_pair_list.append(point_pair)
- quad_num = point_num // 2 - 1
- for idx in range(quad_num):
- # reshape and adjust to clock-wise
- quad_list.append((np.array(point_pair_list)[[idx, idx + 1]]
- ).reshape(4, 2)[[0, 2, 3, 1]])
- return np.array(quad_list)
- def rotate_im_poly(self, im, text_polys):
- """
- rotate image with 90 / 180 / 270 degre
- """
- im_w, im_h = im.shape[1], im.shape[0]
- dst_im = im.copy()
- dst_polys = []
- rand_degree_ratio = np.random.rand()
- rand_degree_cnt = 1
- if rand_degree_ratio > 0.5:
- rand_degree_cnt = 3
- for i in range(rand_degree_cnt):
- dst_im = np.rot90(dst_im)
- rot_degree = -90 * rand_degree_cnt
- rot_angle = rot_degree * math.pi / 180.0
- n_poly = text_polys.shape[0]
- cx, cy = 0.5 * im_w, 0.5 * im_h
- ncx, ncy = 0.5 * dst_im.shape[1], 0.5 * dst_im.shape[0]
- for i in range(n_poly):
- wordBB = text_polys[i]
- poly = []
- for j in range(4): # 16->4
- sx, sy = wordBB[j][0], wordBB[j][1]
- dx = math.cos(rot_angle) * (sx - cx) - math.sin(rot_angle) * (
- sy - cy) + ncx
- dy = math.sin(rot_angle) * (sx - cx) + math.cos(rot_angle) * (
- sy - cy) + ncy
- poly.append([dx, dy])
- dst_polys.append(poly)
- return dst_im, np.array(dst_polys, dtype=np.float32)
- def __call__(self, data):
- input_size = 512
- im = data['image']
- text_polys = data['polys']
- text_tags = data['ignore_tags']
- text_strs = data['texts']
- h, w, _ = im.shape
- text_polys, text_tags, hv_tags = self.check_and_validate_polys(
- text_polys, text_tags, (h, w))
- if text_polys.shape[0] <= 0:
- return None
- # set aspect ratio and keep area fix
- asp_scales = np.arange(1.0, 1.55, 0.1)
- asp_scale = np.random.choice(asp_scales)
- if np.random.rand() < 0.5:
- asp_scale = 1.0 / asp_scale
- asp_scale = math.sqrt(asp_scale)
- asp_wx = asp_scale
- asp_hy = 1.0 / asp_scale
- im = cv2.resize(im, dsize=None, fx=asp_wx, fy=asp_hy)
- text_polys[:, :, 0] *= asp_wx
- text_polys[:, :, 1] *= asp_hy
- if self.use_resize is True:
- ori_h, ori_w, _ = im.shape
- if max(ori_h, ori_w) < 200:
- ratio = 200 / max(ori_h, ori_w)
- im = cv2.resize(im, (int(ori_w * ratio), int(ori_h * ratio)))
- text_polys[:, :, 0] *= ratio
- text_polys[:, :, 1] *= ratio
- if max(ori_h, ori_w) > 512:
- ratio = 512 / max(ori_h, ori_w)
- im = cv2.resize(im, (int(ori_w * ratio), int(ori_h * ratio)))
- text_polys[:, :, 0] *= ratio
- text_polys[:, :, 1] *= ratio
- elif self.use_random_crop is True:
- h, w, _ = im.shape
- if max(h, w) > 2048:
- rd_scale = 2048.0 / max(h, w)
- im = cv2.resize(im, dsize=None, fx=rd_scale, fy=rd_scale)
- text_polys *= rd_scale
- h, w, _ = im.shape
- if min(h, w) < 16:
- return None
- # no background
- im, text_polys, text_tags, hv_tags, text_strs = self.crop_area(
- im,
- text_polys,
- text_tags,
- hv_tags,
- text_strs,
- crop_background=False)
- if text_polys.shape[0] == 0:
- return None
- # continue for all ignore case
- if np.sum((text_tags * 1.0)) >= text_tags.size:
- return None
- new_h, new_w, _ = im.shape
- if (new_h is None) or (new_w is None):
- return None
- # resize image
- std_ratio = float(input_size) / max(new_w, new_h)
- rand_scales = np.array(
- [0.25, 0.375, 0.5, 0.625, 0.75, 0.875, 1.0, 1.0, 1.0, 1.0, 1.0])
- rz_scale = std_ratio * np.random.choice(rand_scales)
- im = cv2.resize(im, dsize=None, fx=rz_scale, fy=rz_scale)
- text_polys[:, :, 0] *= rz_scale
- text_polys[:, :, 1] *= rz_scale
- # add gaussian blur
- if np.random.rand() < 0.1 * 0.5:
- ks = np.random.permutation(5)[0] + 1
- ks = int(ks / 2) * 2 + 1
- im = cv2.GaussianBlur(im, ksize=(ks, ks), sigmaX=0, sigmaY=0)
- # add brighter
- if np.random.rand() < 0.1 * 0.5:
- im = im * (1.0 + np.random.rand() * 0.5)
- im = np.clip(im, 0.0, 255.0)
- # add darker
- if np.random.rand() < 0.1 * 0.5:
- im = im * (1.0 - np.random.rand() * 0.5)
- im = np.clip(im, 0.0, 255.0)
- # Padding the im to [input_size, input_size]
- new_h, new_w, _ = im.shape
- if min(new_w, new_h) < input_size * 0.5:
- return None
- im_padded = np.ones((input_size, input_size, 3), dtype=np.float32)
- im_padded[:, :, 2] = 0.485 * 255
- im_padded[:, :, 1] = 0.456 * 255
- im_padded[:, :, 0] = 0.406 * 255
- # Random the start position
- del_h = input_size - new_h
- del_w = input_size - new_w
- sh, sw = 0, 0
- if del_h > 1:
- sh = int(np.random.rand() * del_h)
- if del_w > 1:
- sw = int(np.random.rand() * del_w)
- # Padding
- im_padded[sh:sh + new_h, sw:sw + new_w, :] = im.copy()
- text_polys[:, :, 0] += sw
- text_polys[:, :, 1] += sh
- score_map, score_label_map, border_map, direction_map, training_mask, \
- pos_list, pos_mask, label_list, score_label_map_text_label = self.generate_tcl_ctc_label(input_size,
- input_size,
- text_polys,
- text_tags,
- text_strs, 0.25)
- if len(label_list) <= 0: # eliminate negative samples
- return None
- pos_list_temp = np.zeros([64, 3])
- pos_mask_temp = np.zeros([64, 1])
- label_list_temp = np.zeros([self.max_text_length, 1]) + self.pad_num
- for i, label in enumerate(label_list):
- n = len(label)
- if n > self.max_text_length:
- label_list[i] = label[:self.max_text_length]
- continue
- while n < self.max_text_length:
- label.append([self.pad_num])
- n += 1
- for i in range(len(label_list)):
- label_list[i] = np.array(label_list[i])
- if len(pos_list) <= 0 or len(pos_list) > self.max_text_nums:
- return None
- for __ in range(self.max_text_nums - len(pos_list), 0, -1):
- pos_list.append(pos_list_temp)
- pos_mask.append(pos_mask_temp)
- label_list.append(label_list_temp)
- if self.img_id == self.batch_size - 1:
- self.img_id = 0
- else:
- self.img_id += 1
- im_padded[:, :, 2] -= 0.485 * 255
- im_padded[:, :, 1] -= 0.456 * 255
- im_padded[:, :, 0] -= 0.406 * 255
- im_padded[:, :, 2] /= (255.0 * 0.229)
- im_padded[:, :, 1] /= (255.0 * 0.224)
- im_padded[:, :, 0] /= (255.0 * 0.225)
- im_padded = im_padded.transpose((2, 0, 1))
- images = im_padded[::-1, :, :]
- tcl_maps = score_map[np.newaxis, :, :]
- tcl_label_maps = score_label_map[np.newaxis, :, :]
- border_maps = border_map.transpose((2, 0, 1))
- direction_maps = direction_map.transpose((2, 0, 1))
- training_masks = training_mask[np.newaxis, :, :]
- pos_list = np.array(pos_list)
- pos_mask = np.array(pos_mask)
- label_list = np.array(label_list)
- data['images'] = images
- data['tcl_maps'] = tcl_maps
- data['tcl_label_maps'] = tcl_label_maps
- data['border_maps'] = border_maps
- data['direction_maps'] = direction_maps
- data['training_masks'] = training_masks
- data['label_list'] = label_list
- data['pos_list'] = pos_list
- data['pos_mask'] = pos_mask
- return data
|