123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164 |
- # Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- from __future__ import absolute_import
- from __future__ import division
- from __future__ import print_function
- import os
- import sys
- __dir__ = os.path.dirname(os.path.abspath(__file__))
- sys.path.append(__dir__)
- sys.path.append(os.path.abspath(os.path.join(__dir__, '..', '..', '..')))
- sys.path.append(
- os.path.abspath(os.path.join(__dir__, '..', '..', '..', 'tools')))
- import yaml
- import paddle
- import paddle.distributed as dist
- paddle.seed(2)
- from ppocr.data import build_dataloader
- from ppocr.modeling.architectures import build_model
- from ppocr.losses import build_loss
- from ppocr.optimizer import build_optimizer
- from ppocr.postprocess import build_post_process
- from ppocr.metrics import build_metric
- from ppocr.utils.save_load import load_model
- import tools.program as program
- import paddleslim
- from paddleslim.dygraph.quant import QAT
- import numpy as np
- dist.get_world_size()
- class PACT(paddle.nn.Layer):
- def __init__(self):
- super(PACT, self).__init__()
- alpha_attr = paddle.ParamAttr(
- name=self.full_name() + ".pact",
- initializer=paddle.nn.initializer.Constant(value=20),
- learning_rate=1.0,
- regularizer=paddle.regularizer.L2Decay(2e-5))
- self.alpha = self.create_parameter(
- shape=[1], attr=alpha_attr, dtype='float32')
- def forward(self, x):
- out_left = paddle.nn.functional.relu(x - self.alpha)
- out_right = paddle.nn.functional.relu(-self.alpha - x)
- x = x - out_left + out_right
- return x
- quant_config = {
- # weight preprocess type, default is None and no preprocessing is performed.
- 'weight_preprocess_type': None,
- # activation preprocess type, default is None and no preprocessing is performed.
- 'activation_preprocess_type': None,
- # weight quantize type, default is 'channel_wise_abs_max'
- 'weight_quantize_type': 'channel_wise_abs_max',
- # activation quantize type, default is 'moving_average_abs_max'
- 'activation_quantize_type': 'moving_average_abs_max',
- # weight quantize bit num, default is 8
- 'weight_bits': 8,
- # activation quantize bit num, default is 8
- 'activation_bits': 8,
- # data type after quantization, such as 'uint8', 'int8', etc. default is 'int8'
- 'dtype': 'int8',
- # window size for 'range_abs_max' quantization. default is 10000
- 'window_size': 10000,
- # The decay coefficient of moving average, default is 0.9
- 'moving_rate': 0.9,
- # for dygraph quantization, layers of type in quantizable_layer_type will be quantized
- 'quantizable_layer_type': ['Conv2D', 'Linear'],
- }
- def sample_generator(loader):
- def __reader__():
- for indx, data in enumerate(loader):
- images = np.array(data[0])
- yield images
- return __reader__
- def sample_generator_layoutxlm_ser(loader):
- def __reader__():
- for indx, data in enumerate(loader):
- input_ids = np.array(data[0])
- bbox = np.array(data[1])
- attention_mask = np.array(data[2])
- token_type_ids = np.array(data[3])
- images = np.array(data[4])
- yield [input_ids, bbox, attention_mask, token_type_ids, images]
- return __reader__
- def main(config, device, logger, vdl_writer):
- # init dist environment
- if config['Global']['distributed']:
- dist.init_parallel_env()
- global_config = config['Global']
- # build dataloader
- config['Train']['loader']['num_workers'] = 0
- is_layoutxlm_ser = config['Architecture']['model_type'] =='kie' and config['Architecture']['Backbone']['name'] == 'LayoutXLMForSer'
- train_dataloader = build_dataloader(config, 'Train', device, logger)
- if config['Eval']:
- config['Eval']['loader']['num_workers'] = 0
- valid_dataloader = build_dataloader(config, 'Eval', device, logger)
- if is_layoutxlm_ser:
- train_dataloader = valid_dataloader
- else:
- valid_dataloader = None
- paddle.enable_static()
- exe = paddle.static.Executor(device)
- if 'inference_model' in global_config.keys(): # , 'inference_model'):
- inference_model_dir = global_config['inference_model']
- else:
- inference_model_dir = os.path.dirname(global_config['pretrained_model'])
- if not (os.path.exists(os.path.join(inference_model_dir, "inference.pdmodel")) and \
- os.path.exists(os.path.join(inference_model_dir, "inference.pdiparams")) ):
- raise ValueError(
- "Please set inference model dir in Global.inference_model or Global.pretrained_model for post-quantazition"
- )
-
- if is_layoutxlm_ser:
- generator = sample_generator_layoutxlm_ser(train_dataloader)
- else:
- generator = sample_generator(train_dataloader)
- paddleslim.quant.quant_post_static(
- executor=exe,
- model_dir=inference_model_dir,
- model_filename='inference.pdmodel',
- params_filename='inference.pdiparams',
- quantize_model_path=global_config['save_inference_dir'],
- sample_generator=generator,
- save_model_filename='inference.pdmodel',
- save_params_filename='inference.pdiparams',
- batch_size=1,
- batch_nums=None)
- if __name__ == '__main__':
- config, device, logger, vdl_writer = program.preprocess(is_train=True)
- main(config, device, logger, vdl_writer)
|