123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367 |
- // Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
- //
- // Licensed under the Apache License, Version 2.0 (the "License");
- // you may not use this file except in compliance with the License.
- // You may obtain a copy of the License at
- //
- // http://www.apache.org/licenses/LICENSE-2.0
- //
- // Unless required by applicable law or agreed to in writing, software
- // distributed under the License is distributed on an "AS IS" BASIS,
- // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- // See the License for the specific language governing permissions and
- // limitations under the License.
- #include "core/general-server/op/general_detection_op.h"
- #include "core/predictor/framework/infer.h"
- #include "core/predictor/framework/memory.h"
- #include "core/predictor/framework/resource.h"
- #include "core/util/include/timer.h"
- #include <algorithm>
- #include <iostream>
- #include <memory>
- #include <sstream>
- /*
- #include "opencv2/imgcodecs/legacy/constants_c.h"
- #include "opencv2/imgproc/types_c.h"
- */
- namespace baidu {
- namespace paddle_serving {
- namespace serving {
- using baidu::paddle_serving::Timer;
- using baidu::paddle_serving::predictor::MempoolWrapper;
- using baidu::paddle_serving::predictor::general_model::Tensor;
- using baidu::paddle_serving::predictor::general_model::Response;
- using baidu::paddle_serving::predictor::general_model::Request;
- using baidu::paddle_serving::predictor::InferManager;
- using baidu::paddle_serving::predictor::PaddleGeneralModelConfig;
- int GeneralDetectionOp::inference() {
- VLOG(2) << "Going to run inference";
- const std::vector<std::string> pre_node_names = pre_names();
- if (pre_node_names.size() != 1) {
- LOG(ERROR) << "This op(" << op_name()
- << ") can only have one predecessor op, but received "
- << pre_node_names.size();
- return -1;
- }
- const std::string pre_name = pre_node_names[0];
- const GeneralBlob *input_blob = get_depend_argument<GeneralBlob>(pre_name);
- if (!input_blob) {
- LOG(ERROR) << "input_blob is nullptr,error";
- return -1;
- }
- uint64_t log_id = input_blob->GetLogId();
- VLOG(2) << "(logid=" << log_id << ") Get precedent op name: " << pre_name;
- GeneralBlob *output_blob = mutable_data<GeneralBlob>();
- if (!output_blob) {
- LOG(ERROR) << "output_blob is nullptr,error";
- return -1;
- }
- output_blob->SetLogId(log_id);
- if (!input_blob) {
- LOG(ERROR) << "(logid=" << log_id
- << ") Failed mutable depended argument, op:" << pre_name;
- return -1;
- }
- const TensorVector *in = &input_blob->tensor_vector;
- TensorVector *out = &output_blob->tensor_vector;
- int batch_size = input_blob->_batch_size;
- VLOG(2) << "(logid=" << log_id << ") input batch size: " << batch_size;
- output_blob->_batch_size = batch_size;
- std::vector<int> input_shape;
- int in_num = 0;
- void *databuf_data = NULL;
- char *databuf_char = NULL;
- size_t databuf_size = 0;
- // now only support single string
- char *total_input_ptr = static_cast<char *>(in->at(0).data.data());
- std::string base64str = total_input_ptr;
- float ratio_h{};
- float ratio_w{};
- cv::Mat img = Base2Mat(base64str);
- cv::Mat srcimg;
- cv::Mat resize_img;
- cv::Mat resize_img_rec;
- cv::Mat crop_img;
- img.copyTo(srcimg);
- this->resize_op_.Run(img, resize_img, this->max_side_len_, ratio_h, ratio_w,
- this->use_tensorrt_);
- this->normalize_op_.Run(&resize_img, this->mean_det, this->scale_det,
- this->is_scale_);
- std::vector<float> input(1 * 3 * resize_img.rows * resize_img.cols, 0.0f);
- this->permute_op_.Run(&resize_img, input.data());
- TensorVector *real_in = new TensorVector();
- if (!real_in) {
- LOG(ERROR) << "real_in is nullptr,error";
- return -1;
- }
- for (int i = 0; i < in->size(); ++i) {
- input_shape = {1, 3, resize_img.rows, resize_img.cols};
- in_num = std::accumulate(input_shape.begin(), input_shape.end(), 1,
- std::multiplies<int>());
- databuf_size = in_num * sizeof(float);
- databuf_data = MempoolWrapper::instance().malloc(databuf_size);
- if (!databuf_data) {
- LOG(ERROR) << "Malloc failed, size: " << databuf_size;
- return -1;
- }
- memcpy(databuf_data, input.data(), databuf_size);
- databuf_char = reinterpret_cast<char *>(databuf_data);
- paddle::PaddleBuf paddleBuf(databuf_char, databuf_size);
- paddle::PaddleTensor tensor_in;
- tensor_in.name = in->at(i).name;
- tensor_in.dtype = paddle::PaddleDType::FLOAT32;
- tensor_in.shape = {1, 3, resize_img.rows, resize_img.cols};
- tensor_in.lod = in->at(i).lod;
- tensor_in.data = paddleBuf;
- real_in->push_back(tensor_in);
- }
- Timer timeline;
- int64_t start = timeline.TimeStampUS();
- timeline.Start();
- if (InferManager::instance().infer(engine_name().c_str(), real_in, out,
- batch_size)) {
- LOG(ERROR) << "(logid=" << log_id
- << ") Failed do infer in fluid model: " << engine_name().c_str();
- return -1;
- }
- delete real_in;
- std::vector<int> output_shape;
- int out_num = 0;
- void *databuf_data_out = NULL;
- char *databuf_char_out = NULL;
- size_t databuf_size_out = 0;
- // this is special add for PaddleOCR postprecess
- int infer_outnum = out->size();
- for (int k = 0; k < infer_outnum; ++k) {
- int n2 = out->at(k).shape[2];
- int n3 = out->at(k).shape[3];
- int n = n2 * n3;
- float *out_data = static_cast<float *>(out->at(k).data.data());
- std::vector<float> pred(n, 0.0);
- std::vector<unsigned char> cbuf(n, ' ');
- for (int i = 0; i < n; i++) {
- pred[i] = float(out_data[i]);
- cbuf[i] = (unsigned char)((out_data[i]) * 255);
- }
- cv::Mat cbuf_map(n2, n3, CV_8UC1, (unsigned char *)cbuf.data());
- cv::Mat pred_map(n2, n3, CV_32F, (float *)pred.data());
- const double threshold = this->det_db_thresh_ * 255;
- const double maxvalue = 255;
- cv::Mat bit_map;
- cv::threshold(cbuf_map, bit_map, threshold, maxvalue, cv::THRESH_BINARY);
- cv::Mat dilation_map;
- cv::Mat dila_ele =
- cv::getStructuringElement(cv::MORPH_RECT, cv::Size(2, 2));
- cv::dilate(bit_map, dilation_map, dila_ele);
- boxes = post_processor_.BoxesFromBitmap(pred_map, dilation_map,
- this->det_db_box_thresh_,
- this->det_db_unclip_ratio_);
- boxes = post_processor_.FilterTagDetRes(boxes, ratio_h, ratio_w, srcimg);
- float max_wh_ratio = 0.0f;
- std::vector<cv::Mat> crop_imgs;
- std::vector<cv::Mat> resize_imgs;
- int max_resize_w = 0;
- int max_resize_h = 0;
- int box_num = boxes.size();
- std::vector<std::vector<float>> output_rec;
- for (int i = 0; i < box_num; ++i) {
- cv::Mat line_img = GetRotateCropImage(img, boxes[i]);
- float wh_ratio = float(line_img.cols) / float(line_img.rows);
- max_wh_ratio = max_wh_ratio > wh_ratio ? max_wh_ratio : wh_ratio;
- crop_imgs.push_back(line_img);
- }
- for (int i = 0; i < box_num; ++i) {
- cv::Mat resize_img;
- crop_img = crop_imgs[i];
- this->resize_op_rec.Run(crop_img, resize_img, max_wh_ratio,
- this->use_tensorrt_);
- this->normalize_op_.Run(&resize_img, this->mean_rec, this->scale_rec,
- this->is_scale_);
- max_resize_w = std::max(max_resize_w, resize_img.cols);
- max_resize_h = std::max(max_resize_h, resize_img.rows);
- resize_imgs.push_back(resize_img);
- }
- int buf_size = 3 * max_resize_h * max_resize_w;
- output_rec = std::vector<std::vector<float>>(
- box_num, std::vector<float>(buf_size, 0.0f));
- for (int i = 0; i < box_num; ++i) {
- resize_img_rec = resize_imgs[i];
- this->permute_op_.Run(&resize_img_rec, output_rec[i].data());
- }
- // Inference.
- output_shape = {box_num, 3, max_resize_h, max_resize_w};
- out_num = std::accumulate(output_shape.begin(), output_shape.end(), 1,
- std::multiplies<int>());
- databuf_size_out = out_num * sizeof(float);
- databuf_data_out = MempoolWrapper::instance().malloc(databuf_size_out);
- if (!databuf_data_out) {
- LOG(ERROR) << "Malloc failed, size: " << databuf_size_out;
- return -1;
- }
- int offset = buf_size * sizeof(float);
- for (int i = 0; i < box_num; ++i) {
- memcpy(databuf_data_out + i * offset, output_rec[i].data(), offset);
- }
- databuf_char_out = reinterpret_cast<char *>(databuf_data_out);
- paddle::PaddleBuf paddleBuf(databuf_char_out, databuf_size_out);
- paddle::PaddleTensor tensor_out;
- tensor_out.name = "x";
- tensor_out.dtype = paddle::PaddleDType::FLOAT32;
- tensor_out.shape = output_shape;
- tensor_out.data = paddleBuf;
- out->push_back(tensor_out);
- }
- out->erase(out->begin(), out->begin() + infer_outnum);
- int64_t end = timeline.TimeStampUS();
- CopyBlobInfo(input_blob, output_blob);
- AddBlobInfo(output_blob, start);
- AddBlobInfo(output_blob, end);
- return 0;
- }
- cv::Mat GeneralDetectionOp::Base2Mat(std::string &base64_data) {
- cv::Mat img;
- std::string s_mat;
- s_mat = base64Decode(base64_data.data(), base64_data.size());
- std::vector<char> base64_img(s_mat.begin(), s_mat.end());
- img = cv::imdecode(base64_img, cv::IMREAD_COLOR); // CV_LOAD_IMAGE_COLOR
- return img;
- }
- std::string GeneralDetectionOp::base64Decode(const char *Data, int DataByte) {
- const char DecodeTable[] = {
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 62, // '+'
- 0, 0, 0,
- 63, // '/'
- 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, // '0'-'9'
- 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,
- 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, // 'A'-'Z'
- 0, 0, 0, 0, 0, 0, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36,
- 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, // 'a'-'z'
- };
- std::string strDecode;
- int nValue;
- int i = 0;
- while (i < DataByte) {
- if (*Data != '\r' && *Data != '\n') {
- nValue = DecodeTable[*Data++] << 18;
- nValue += DecodeTable[*Data++] << 12;
- strDecode += (nValue & 0x00FF0000) >> 16;
- if (*Data != '=') {
- nValue += DecodeTable[*Data++] << 6;
- strDecode += (nValue & 0x0000FF00) >> 8;
- if (*Data != '=') {
- nValue += DecodeTable[*Data++];
- strDecode += nValue & 0x000000FF;
- }
- }
- i += 4;
- } else // 回车换行,跳过
- {
- Data++;
- i++;
- }
- }
- return strDecode;
- }
- cv::Mat
- GeneralDetectionOp::GetRotateCropImage(const cv::Mat &srcimage,
- std::vector<std::vector<int>> box) {
- cv::Mat image;
- srcimage.copyTo(image);
- std::vector<std::vector<int>> points = box;
- int x_collect[4] = {box[0][0], box[1][0], box[2][0], box[3][0]};
- int y_collect[4] = {box[0][1], box[1][1], box[2][1], box[3][1]};
- int left = int(*std::min_element(x_collect, x_collect + 4));
- int right = int(*std::max_element(x_collect, x_collect + 4));
- int top = int(*std::min_element(y_collect, y_collect + 4));
- int bottom = int(*std::max_element(y_collect, y_collect + 4));
- cv::Mat img_crop;
- image(cv::Rect(left, top, right - left, bottom - top)).copyTo(img_crop);
- for (int i = 0; i < points.size(); i++) {
- points[i][0] -= left;
- points[i][1] -= top;
- }
- int img_crop_width = int(sqrt(pow(points[0][0] - points[1][0], 2) +
- pow(points[0][1] - points[1][1], 2)));
- int img_crop_height = int(sqrt(pow(points[0][0] - points[3][0], 2) +
- pow(points[0][1] - points[3][1], 2)));
- cv::Point2f pts_std[4];
- pts_std[0] = cv::Point2f(0., 0.);
- pts_std[1] = cv::Point2f(img_crop_width, 0.);
- pts_std[2] = cv::Point2f(img_crop_width, img_crop_height);
- pts_std[3] = cv::Point2f(0.f, img_crop_height);
- cv::Point2f pointsf[4];
- pointsf[0] = cv::Point2f(points[0][0], points[0][1]);
- pointsf[1] = cv::Point2f(points[1][0], points[1][1]);
- pointsf[2] = cv::Point2f(points[2][0], points[2][1]);
- pointsf[3] = cv::Point2f(points[3][0], points[3][1]);
- cv::Mat M = cv::getPerspectiveTransform(pointsf, pts_std);
- cv::Mat dst_img;
- cv::warpPerspective(img_crop, dst_img, M,
- cv::Size(img_crop_width, img_crop_height),
- cv::BORDER_REPLICATE);
- if (float(dst_img.rows) >= float(dst_img.cols) * 1.5) {
- cv::Mat srcCopy = cv::Mat(dst_img.rows, dst_img.cols, dst_img.depth());
- cv::transpose(dst_img, srcCopy);
- cv::flip(srcCopy, srcCopy, 0);
- return srcCopy;
- } else {
- return dst_img;
- }
- }
- DEFINE_OP(GeneralDetectionOp);
- } // namespace serving
- } // namespace paddle_serving
- } // namespace baidu
|