123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102 |
- # Licensed to the Apache Software Foundation (ASF) under one
- # or more contributor license agreements. See the NOTICE file
- # distributed with this work for additional information
- # regarding copyright ownership. The ASF licenses this file
- # to you under the Apache License, Version 2.0 (the
- # "License"); you may not use this file except in compliance
- # with the License. You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing,
- # software distributed under the License is distributed on an
- # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
- # KIND, either express or implied. See the License for the
- # specific language governing permissions and limitations
- # under the License.
- import os
- import pathlib
- import re
- import sys
- import cv2
- import math
- from PIL import Image
- import numpy as np
- def resize_norm_img(img, image_shape, padding=True):
- imgC, imgH, imgW = image_shape
- h = img.shape[0]
- w = img.shape[1]
- if not padding:
- resized_image = cv2.resize(
- img, (imgW, imgH), interpolation=cv2.INTER_LINEAR)
- resized_w = imgW
- else:
- ratio = w / float(h)
- if math.ceil(imgH * ratio) > imgW:
- resized_w = imgW
- else:
- resized_w = int(math.ceil(imgH * ratio))
- resized_image = cv2.resize(img, (resized_w, imgH))
- resized_image = resized_image.astype('float32')
- if image_shape[0] == 1:
- resized_image = resized_image / 255
- resized_image = resized_image[np.newaxis, :]
- else:
- resized_image = resized_image.transpose((2, 0, 1)) / 255
- resized_image -= 0.5
- resized_image /= 0.5
- padding_im = np.zeros((imgC, imgH, imgW), dtype=np.float32)
- padding_im[:, :, 0:resized_w] = resized_image
- return padding_im
- def create_header_file(name, tensor_name, tensor_data, output_path):
- """
- This function generates a header file containing the data from the numpy array provided.
- """
- file_path = pathlib.Path(f"{output_path}/" + name).resolve()
- # Create header file with npy_data as a C array
- raw_path = file_path.with_suffix(".h").resolve()
- with open(raw_path, "w") as header_file:
- header_file.write(
- "\n"
- + f"const size_t {tensor_name}_len = {tensor_data.size};\n"
- + f'__attribute__((section(".data.tvm"), aligned(16))) float {tensor_name}[] = '
- )
- header_file.write("{")
- for i in np.ndindex(tensor_data.shape):
- header_file.write(f"{tensor_data[i]}, ")
- header_file.write("};\n\n")
- def create_headers(image_name):
- """
- This function generates C header files for the input and output arrays required to run inferences
- """
- img_path = os.path.join("./", f"{image_name}")
- # Resize image to 32x320
- img = cv2.imread(img_path)
- img = resize_norm_img(img, [3,32,320])
- img_data = img.astype("float32")
-
- # # Add the batch dimension, as we are expecting 4-dimensional input: NCHW.
- img_data = np.expand_dims(img_data, axis=0)
- # Create input header file
- create_header_file("inputs", "input", img_data, "./include")
- # Create output header file
- output_data = np.zeros([7760], np.float)
- create_header_file(
- "outputs",
- "output",
- output_data,
- "./include",
- )
- if __name__ == "__main__":
- create_headers(sys.argv[1])
|