123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157 |
- # Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import os
- import sys
- __dir__ = os.path.dirname(os.path.abspath(__file__))
- sys.path.append(__dir__)
- sys.path.append(os.path.abspath(os.path.join(__dir__, '..')))
- from ppocr.utils.logging import get_logger
- logger = get_logger()
- import cv2
- import numpy as np
- import time
- from PIL import Image
- from ppocr.utils.utility import get_image_file_list
- from tools.infer.utility import draw_ocr, draw_boxes, str2bool
- from ppstructure.utility import draw_structure_result
- from ppstructure.predict_system import to_excel
- import requests
- import json
- import base64
- def cv2_to_base64(image):
- return base64.b64encode(image).decode('utf8')
- def draw_server_result(image_file, res):
- img = cv2.imread(image_file)
- image = Image.fromarray(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
- if len(res) == 0:
- return np.array(image)
- keys = res[0].keys()
- if 'text_region' not in keys: # for ocr_rec, draw function is invalid
- logger.info("draw function is invalid for ocr_rec!")
- return None
- elif 'text' not in keys: # for ocr_det
- logger.info("draw text boxes only!")
- boxes = []
- for dno in range(len(res)):
- boxes.append(res[dno]['text_region'])
- boxes = np.array(boxes)
- draw_img = draw_boxes(image, boxes)
- return draw_img
- else: # for ocr_system
- logger.info("draw boxes and texts!")
- boxes = []
- texts = []
- scores = []
- for dno in range(len(res)):
- boxes.append(res[dno]['text_region'])
- texts.append(res[dno]['text'])
- scores.append(res[dno]['confidence'])
- boxes = np.array(boxes)
- scores = np.array(scores)
- draw_img = draw_ocr(
- image, boxes, texts, scores, draw_txt=True, drop_score=0.5)
- return draw_img
- def save_structure_res(res, save_folder, image_file):
- img = cv2.imread(image_file)
- excel_save_folder = os.path.join(save_folder, os.path.basename(image_file))
- os.makedirs(excel_save_folder, exist_ok=True)
- # save res
- with open(
- os.path.join(excel_save_folder, 'res.txt'), 'w',
- encoding='utf8') as f:
- for region in res:
- if region['type'] == 'Table':
- excel_path = os.path.join(excel_save_folder,
- '{}.xlsx'.format(region['bbox']))
- to_excel(region['res'], excel_path)
- elif region['type'] == 'Figure':
- x1, y1, x2, y2 = region['bbox']
- print(region['bbox'])
- roi_img = img[y1:y2, x1:x2, :]
- img_path = os.path.join(excel_save_folder,
- '{}.jpg'.format(region['bbox']))
- cv2.imwrite(img_path, roi_img)
- else:
- for text_result in region['res']:
- f.write('{}\n'.format(json.dumps(text_result)))
- def main(args):
- image_file_list = get_image_file_list(args.image_dir)
- is_visualize = False
- headers = {"Content-type": "application/json"}
- cnt = 0
- total_time = 0
- for image_file in image_file_list:
- img = open(image_file, 'rb').read()
- if img is None:
- logger.info("error in loading image:{}".format(image_file))
- continue
- img_name = os.path.basename(image_file)
- # seed http request
- starttime = time.time()
- data = {'images': [cv2_to_base64(img)]}
- r = requests.post(
- url=args.server_url, headers=headers, data=json.dumps(data))
- elapse = time.time() - starttime
- total_time += elapse
- logger.info("Predict time of %s: %.3fs" % (image_file, elapse))
- res = r.json()["results"][0]
- logger.info(res)
- if args.visualize:
- draw_img = None
- if 'structure_table' in args.server_url:
- to_excel(res['html'], './{}.xlsx'.format(img_name))
- elif 'structure_system' in args.server_url:
- save_structure_res(res['regions'], args.output, image_file)
- else:
- draw_img = draw_server_result(image_file, res)
- if draw_img is not None:
- if not os.path.exists(args.output):
- os.makedirs(args.output)
- cv2.imwrite(
- os.path.join(args.output, os.path.basename(image_file)),
- draw_img[:, :, ::-1])
- logger.info("The visualized image saved in {}".format(
- os.path.join(args.output, os.path.basename(image_file))))
- cnt += 1
- if cnt % 100 == 0:
- logger.info("{} processed".format(cnt))
- logger.info("avg time cost: {}".format(float(total_time) / cnt))
- def parse_args():
- import argparse
- parser = argparse.ArgumentParser(description="args for hub serving")
- parser.add_argument("--server_url", type=str, required=True)
- parser.add_argument("--image_dir", type=str, required=True)
- parser.add_argument("--visualize", type=str2bool, default=False)
- parser.add_argument("--output", type=str, default='./hubserving_result')
- args = parser.parse_args()
- return args
- if __name__ == '__main__':
- args = parse_args()
- main(args)
|