12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485 |
- # Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- from __future__ import absolute_import
- from __future__ import division
- from __future__ import print_function
- import numpy as np
- import os
- import sys
- __dir__ = os.path.dirname(os.path.abspath(__file__))
- sys.path.append(__dir__)
- sys.path.insert(0, os.path.abspath(os.path.join(__dir__, '..')))
- os.environ["FLAGS_allocator_strategy"] = 'auto_growth'
- import paddle
- from ppocr.data import create_operators, transform
- from ppocr.modeling.architectures import build_model
- from ppocr.postprocess import build_post_process
- from ppocr.utils.save_load import load_model
- from ppocr.utils.utility import get_image_file_list
- import tools.program as program
- def main():
- global_config = config['Global']
- # build post process
- post_process_class = build_post_process(config['PostProcess'],
- global_config)
- # build model
- model = build_model(config['Architecture'])
- load_model(config, model)
- # create data ops
- transforms = []
- for op in config['Eval']['dataset']['transforms']:
- op_name = list(op)[0]
- if 'Label' in op_name:
- continue
- elif op_name == 'KeepKeys':
- op[op_name]['keep_keys'] = ['image']
- elif op_name == "SSLRotateResize":
- op[op_name]["mode"] = "test"
- transforms.append(op)
- global_config['infer_mode'] = True
- ops = create_operators(transforms, global_config)
- model.eval()
- for file in get_image_file_list(config['Global']['infer_img']):
- logger.info("infer_img: {}".format(file))
- with open(file, 'rb') as f:
- img = f.read()
- data = {'image': img}
- batch = transform(data, ops)
- images = np.expand_dims(batch[0], axis=0)
- images = paddle.to_tensor(images)
- preds = model(images)
- post_result = post_process_class(preds)
- for rec_result in post_result:
- logger.info('\t result: {}'.format(rec_result))
- logger.info("success!")
- if __name__ == '__main__':
- config, device, logger, vdl_writer = program.preprocess()
- main()
|