123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262 |
- # Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import os
- import sys
- import subprocess
- __dir__ = os.path.dirname(os.path.abspath(__file__))
- sys.path.append(__dir__)
- sys.path.insert(0, os.path.abspath(os.path.join(__dir__, '../..')))
- os.environ["FLAGS_allocator_strategy"] = 'auto_growth'
- import cv2
- import copy
- import numpy as np
- import json
- import time
- import logging
- from PIL import Image
- import tools.infer.utility as utility
- import tools.infer.predict_rec as predict_rec
- import tools.infer.predict_det as predict_det
- import tools.infer.predict_cls as predict_cls
- from ppocr.utils.utility import get_image_file_list, check_and_read
- from ppocr.utils.logging import get_logger
- from tools.infer.utility import draw_ocr_box_txt, get_rotate_crop_image, get_minarea_rect_crop
- logger = get_logger()
- class TextSystem(object):
- def __init__(self, args):
- if not args.show_log:
- logger.setLevel(logging.INFO)
- self.text_detector = predict_det.TextDetector(args)
- self.text_recognizer = predict_rec.TextRecognizer(args)
- self.use_angle_cls = args.use_angle_cls
- self.drop_score = args.drop_score
- if self.use_angle_cls:
- self.text_classifier = predict_cls.TextClassifier(args)
- self.args = args
- self.crop_image_res_index = 0
- def draw_crop_rec_res(self, output_dir, img_crop_list, rec_res):
- os.makedirs(output_dir, exist_ok=True)
- bbox_num = len(img_crop_list)
- for bno in range(bbox_num):
- cv2.imwrite(
- os.path.join(output_dir,
- f"mg_crop_{bno+self.crop_image_res_index}.jpg"),
- img_crop_list[bno])
- logger.debug(f"{bno}, {rec_res[bno]}")
- self.crop_image_res_index += bbox_num
- def __call__(self, img, cls=True):
- time_dict = {'det': 0, 'rec': 0, 'csl': 0, 'all': 0}
- start = time.time()
- ori_im = img.copy()
- dt_boxes, elapse = self.text_detector(img)
- time_dict['det'] = elapse
- logger.debug("dt_boxes num : {}, elapse : {}".format(
- len(dt_boxes), elapse))
- if dt_boxes is None:
- return None, None
- img_crop_list = []
- dt_boxes = sorted_boxes(dt_boxes)
- for bno in range(len(dt_boxes)):
- tmp_box = copy.deepcopy(dt_boxes[bno])
- if self.args.det_box_type == "quad":
- img_crop = get_rotate_crop_image(ori_im, tmp_box)
- else:
- img_crop = get_minarea_rect_crop(ori_im, tmp_box)
- img_crop_list.append(img_crop)
- if self.use_angle_cls and cls:
- img_crop_list, angle_list, elapse = self.text_classifier(
- img_crop_list)
- time_dict['cls'] = elapse
- logger.debug("cls num : {}, elapse : {}".format(
- len(img_crop_list), elapse))
- rec_res, elapse = self.text_recognizer(img_crop_list)
- time_dict['rec'] = elapse
- logger.debug("rec_res num : {}, elapse : {}".format(
- len(rec_res), elapse))
- if self.args.save_crop_res:
- self.draw_crop_rec_res(self.args.crop_res_save_dir, img_crop_list,
- rec_res)
- filter_boxes, filter_rec_res = [], []
- for box, rec_result in zip(dt_boxes, rec_res):
- text, score = rec_result
- if score >= self.drop_score:
- filter_boxes.append(box)
- filter_rec_res.append(rec_result)
- end = time.time()
- time_dict['all'] = end - start
- return filter_boxes, filter_rec_res, time_dict
- def sorted_boxes(dt_boxes):
- """
- Sort text boxes in order from top to bottom, left to right
- args:
- dt_boxes(array):detected text boxes with shape [4, 2]
- return:
- sorted boxes(array) with shape [4, 2]
- """
- num_boxes = dt_boxes.shape[0]
- sorted_boxes = sorted(dt_boxes, key=lambda x: (x[0][1], x[0][0]))
- _boxes = list(sorted_boxes)
- for i in range(num_boxes - 1):
- for j in range(i, -1, -1):
- if abs(_boxes[j + 1][0][1] - _boxes[j][0][1]) < 10 and \
- (_boxes[j + 1][0][0] < _boxes[j][0][0]):
- tmp = _boxes[j]
- _boxes[j] = _boxes[j + 1]
- _boxes[j + 1] = tmp
- else:
- break
- return _boxes
- def main(args):
- image_file_list = get_image_file_list(args.image_dir)
- image_file_list = image_file_list[args.process_id::args.total_process_num]
- text_sys = TextSystem(args)
- is_visualize = True
- font_path = args.vis_font_path
- drop_score = args.drop_score
- draw_img_save_dir = args.draw_img_save_dir
- os.makedirs(draw_img_save_dir, exist_ok=True)
- save_results = []
- logger.info(
- "In PP-OCRv3, rec_image_shape parameter defaults to '3, 48, 320', "
- "if you are using recognition model with PP-OCRv2 or an older version, please set --rec_image_shape='3,32,320"
- )
- # warm up 10 times
- if args.warmup:
- img = np.random.uniform(0, 255, [640, 640, 3]).astype(np.uint8)
- for i in range(10):
- res = text_sys(img)
- total_time = 0
- cpu_mem, gpu_mem, gpu_util = 0, 0, 0
- _st = time.time()
- count = 0
- for idx, image_file in enumerate(image_file_list):
- img, flag_gif, flag_pdf = check_and_read(image_file)
- if not flag_gif and not flag_pdf:
- img = cv2.imread(image_file)
- if not flag_pdf:
- if img is None:
- logger.debug("error in loading image:{}".format(image_file))
- continue
- imgs = [img]
- else:
- page_num = args.page_num
- if page_num > len(img) or page_num == 0:
- page_num = len(img)
- imgs = img[:page_num]
- for index, img in enumerate(imgs):
- starttime = time.time()
- dt_boxes, rec_res, time_dict = text_sys(img)
- elapse = time.time() - starttime
- total_time += elapse
- if len(imgs) > 1:
- logger.debug(
- str(idx) + '_' + str(index) + " Predict time of %s: %.3fs"
- % (image_file, elapse))
- else:
- logger.debug(
- str(idx) + " Predict time of %s: %.3fs" % (image_file,
- elapse))
- for text, score in rec_res:
- logger.debug("{}, {:.3f}".format(text, score))
- res = [{
- "transcription": rec_res[i][0],
- "points": np.array(dt_boxes[i]).astype(np.int32).tolist(),
- } for i in range(len(dt_boxes))]
- if len(imgs) > 1:
- save_pred = os.path.basename(image_file) + '_' + str(
- index) + "\t" + json.dumps(
- res, ensure_ascii=False) + "\n"
- else:
- save_pred = os.path.basename(image_file) + "\t" + json.dumps(
- res, ensure_ascii=False) + "\n"
- save_results.append(save_pred)
- if is_visualize:
- image = Image.fromarray(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
- boxes = dt_boxes
- txts = [rec_res[i][0] for i in range(len(rec_res))]
- scores = [rec_res[i][1] for i in range(len(rec_res))]
- draw_img = draw_ocr_box_txt(
- image,
- boxes,
- txts,
- scores,
- drop_score=drop_score,
- font_path=font_path)
- if flag_gif:
- save_file = image_file[:-3] + "png"
- elif flag_pdf:
- save_file = image_file.replace('.pdf',
- '_' + str(index) + '.png')
- else:
- save_file = image_file
- cv2.imwrite(
- os.path.join(draw_img_save_dir,
- os.path.basename(save_file)),
- draw_img[:, :, ::-1])
- logger.debug("The visualized image saved in {}".format(
- os.path.join(draw_img_save_dir, os.path.basename(
- save_file))))
- logger.info("The predict total time is {}".format(time.time() - _st))
- if args.benchmark:
- text_sys.text_detector.autolog.report()
- text_sys.text_recognizer.autolog.report()
- with open(
- os.path.join(draw_img_save_dir, "system_results.txt"),
- 'w',
- encoding='utf-8') as f:
- f.writelines(save_results)
- if __name__ == "__main__":
- args = utility.parse_args()
- if args.use_mp:
- p_list = []
- total_process_num = args.total_process_num
- for process_id in range(total_process_num):
- cmd = [sys.executable, "-u"] + sys.argv + [
- "--process_id={}".format(process_id),
- "--use_mp={}".format(False)
- ]
- p = subprocess.Popen(cmd, stdout=sys.stdout, stderr=sys.stdout)
- p_list.append(p)
- for p in p_list:
- p.wait()
- else:
- main(args)
|