123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155 |
- # Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import os
- import sys
- from PIL import Image
- __dir__ = os.path.dirname(os.path.abspath(__file__))
- sys.path.insert(0, __dir__)
- sys.path.insert(0, os.path.abspath(os.path.join(__dir__, '../..')))
- os.environ["FLAGS_allocator_strategy"] = 'auto_growth'
- import cv2
- import numpy as np
- import math
- import time
- import traceback
- import paddle
- import tools.infer.utility as utility
- from ppocr.postprocess import build_post_process
- from ppocr.utils.logging import get_logger
- from ppocr.utils.utility import get_image_file_list, check_and_read
- logger = get_logger()
- class TextSR(object):
- def __init__(self, args):
- self.sr_image_shape = [int(v) for v in args.sr_image_shape.split(",")]
- self.sr_batch_num = args.sr_batch_num
- self.predictor, self.input_tensor, self.output_tensors, self.config = \
- utility.create_predictor(args, 'sr', logger)
- self.benchmark = args.benchmark
- if args.benchmark:
- import auto_log
- pid = os.getpid()
- gpu_id = utility.get_infer_gpuid()
- self.autolog = auto_log.AutoLogger(
- model_name="sr",
- model_precision=args.precision,
- batch_size=args.sr_batch_num,
- data_shape="dynamic",
- save_path=None, #args.save_log_path,
- inference_config=self.config,
- pids=pid,
- process_name=None,
- gpu_ids=gpu_id if args.use_gpu else None,
- time_keys=[
- 'preprocess_time', 'inference_time', 'postprocess_time'
- ],
- warmup=0,
- logger=logger)
- def resize_norm_img(self, img):
- imgC, imgH, imgW = self.sr_image_shape
- img = img.resize((imgW // 2, imgH // 2), Image.BICUBIC)
- img_numpy = np.array(img).astype("float32")
- img_numpy = img_numpy.transpose((2, 0, 1)) / 255
- return img_numpy
- def __call__(self, img_list):
- img_num = len(img_list)
- batch_num = self.sr_batch_num
- st = time.time()
- st = time.time()
- all_result = [] * img_num
- if self.benchmark:
- self.autolog.times.start()
- for beg_img_no in range(0, img_num, batch_num):
- end_img_no = min(img_num, beg_img_no + batch_num)
- norm_img_batch = []
- imgC, imgH, imgW = self.sr_image_shape
- for ino in range(beg_img_no, end_img_no):
- norm_img = self.resize_norm_img(img_list[ino])
- norm_img = norm_img[np.newaxis, :]
- norm_img_batch.append(norm_img)
- norm_img_batch = np.concatenate(norm_img_batch)
- norm_img_batch = norm_img_batch.copy()
- if self.benchmark:
- self.autolog.times.stamp()
- self.input_tensor.copy_from_cpu(norm_img_batch)
- self.predictor.run()
- outputs = []
- for output_tensor in self.output_tensors:
- output = output_tensor.copy_to_cpu()
- outputs.append(output)
- if len(outputs) != 1:
- preds = outputs
- else:
- preds = outputs[0]
- all_result.append(outputs)
- if self.benchmark:
- self.autolog.times.end(stamp=True)
- return all_result, time.time() - st
- def main(args):
- image_file_list = get_image_file_list(args.image_dir)
- text_recognizer = TextSR(args)
- valid_image_file_list = []
- img_list = []
- # warmup 2 times
- if args.warmup:
- img = np.random.uniform(0, 255, [16, 64, 3]).astype(np.uint8)
- for i in range(2):
- res = text_recognizer([img] * int(args.sr_batch_num))
- for image_file in image_file_list:
- img, flag, _ = check_and_read(image_file)
- if not flag:
- img = Image.open(image_file).convert("RGB")
- if img is None:
- logger.info("error in loading image:{}".format(image_file))
- continue
- valid_image_file_list.append(image_file)
- img_list.append(img)
- try:
- preds, _ = text_recognizer(img_list)
- for beg_no in range(len(preds)):
- sr_img = preds[beg_no][1]
- lr_img = preds[beg_no][0]
- for i in (range(sr_img.shape[0])):
- fm_sr = (sr_img[i] * 255).transpose(1, 2, 0).astype(np.uint8)
- fm_lr = (lr_img[i] * 255).transpose(1, 2, 0).astype(np.uint8)
- img_name_pure = os.path.split(valid_image_file_list[
- beg_no * args.sr_batch_num + i])[-1]
- cv2.imwrite("infer_result/sr_{}".format(img_name_pure),
- fm_sr[:, :, ::-1])
- logger.info("The visualized image saved in infer_result/sr_{}".
- format(img_name_pure))
- except Exception as E:
- logger.info(traceback.format_exc())
- logger.info(E)
- exit()
- if args.benchmark:
- text_recognizer.autolog.report()
- if __name__ == "__main__":
- main(utility.parse_args())
|