123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169 |
- # Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import os
- import sys
- __dir__ = os.path.dirname(os.path.abspath(__file__))
- sys.path.append(__dir__)
- sys.path.insert(0, os.path.abspath(os.path.join(__dir__, '../..')))
- os.environ["FLAGS_allocator_strategy"] = 'auto_growth'
- import cv2
- import numpy as np
- import time
- import sys
- import tools.infer.utility as utility
- from ppocr.utils.logging import get_logger
- from ppocr.utils.utility import get_image_file_list, check_and_read
- from ppocr.data import create_operators, transform
- from ppocr.postprocess import build_post_process
- logger = get_logger()
- class TextE2E(object):
- def __init__(self, args):
- self.args = args
- self.e2e_algorithm = args.e2e_algorithm
- self.use_onnx = args.use_onnx
- pre_process_list = [{
- 'E2EResizeForTest': {}
- }, {
- 'NormalizeImage': {
- 'std': [0.229, 0.224, 0.225],
- 'mean': [0.485, 0.456, 0.406],
- 'scale': '1./255.',
- 'order': 'hwc'
- }
- }, {
- 'ToCHWImage': None
- }, {
- 'KeepKeys': {
- 'keep_keys': ['image', 'shape']
- }
- }]
- postprocess_params = {}
- if self.e2e_algorithm == "PGNet":
- pre_process_list[0] = {
- 'E2EResizeForTest': {
- 'max_side_len': args.e2e_limit_side_len,
- 'valid_set': 'totaltext'
- }
- }
- postprocess_params['name'] = 'PGPostProcess'
- postprocess_params["score_thresh"] = args.e2e_pgnet_score_thresh
- postprocess_params["character_dict_path"] = args.e2e_char_dict_path
- postprocess_params["valid_set"] = args.e2e_pgnet_valid_set
- postprocess_params["mode"] = args.e2e_pgnet_mode
- else:
- logger.info("unknown e2e_algorithm:{}".format(self.e2e_algorithm))
- sys.exit(0)
- self.preprocess_op = create_operators(pre_process_list)
- self.postprocess_op = build_post_process(postprocess_params)
- self.predictor, self.input_tensor, self.output_tensors, _ = utility.create_predictor(
- args, 'e2e', logger) # paddle.jit.load(args.det_model_dir)
- # self.predictor.eval()
- def clip_det_res(self, points, img_height, img_width):
- for pno in range(points.shape[0]):
- points[pno, 0] = int(min(max(points[pno, 0], 0), img_width - 1))
- points[pno, 1] = int(min(max(points[pno, 1], 0), img_height - 1))
- return points
- def filter_tag_det_res_only_clip(self, dt_boxes, image_shape):
- img_height, img_width = image_shape[0:2]
- dt_boxes_new = []
- for box in dt_boxes:
- box = self.clip_det_res(box, img_height, img_width)
- dt_boxes_new.append(box)
- dt_boxes = np.array(dt_boxes_new)
- return dt_boxes
- def __call__(self, img):
- ori_im = img.copy()
- data = {'image': img}
- data = transform(data, self.preprocess_op)
- img, shape_list = data
- if img is None:
- return None, 0
- img = np.expand_dims(img, axis=0)
- shape_list = np.expand_dims(shape_list, axis=0)
- img = img.copy()
- starttime = time.time()
- if self.use_onnx:
- input_dict = {}
- input_dict[self.input_tensor.name] = img
- outputs = self.predictor.run(self.output_tensors, input_dict)
- preds = {}
- preds['f_border'] = outputs[0]
- preds['f_char'] = outputs[1]
- preds['f_direction'] = outputs[2]
- preds['f_score'] = outputs[3]
- else:
- self.input_tensor.copy_from_cpu(img)
- self.predictor.run()
- outputs = []
- for output_tensor in self.output_tensors:
- output = output_tensor.copy_to_cpu()
- outputs.append(output)
- preds = {}
- if self.e2e_algorithm == 'PGNet':
- preds['f_border'] = outputs[0]
- preds['f_char'] = outputs[1]
- preds['f_direction'] = outputs[2]
- preds['f_score'] = outputs[3]
- else:
- raise NotImplementedError
- post_result = self.postprocess_op(preds, shape_list)
- points, strs = post_result['points'], post_result['texts']
- dt_boxes = self.filter_tag_det_res_only_clip(points, ori_im.shape)
- elapse = time.time() - starttime
- return dt_boxes, strs, elapse
- if __name__ == "__main__":
- args = utility.parse_args()
- image_file_list = get_image_file_list(args.image_dir)
- text_detector = TextE2E(args)
- count = 0
- total_time = 0
- draw_img_save = "./inference_results"
- if not os.path.exists(draw_img_save):
- os.makedirs(draw_img_save)
- for image_file in image_file_list:
- img, flag, _ = check_and_read(image_file)
- if not flag:
- img = cv2.imread(image_file)
- if img is None:
- logger.info("error in loading image:{}".format(image_file))
- continue
- points, strs, elapse = text_detector(img)
- if count > 0:
- total_time += elapse
- count += 1
- logger.info("Predict time of {}: {}".format(image_file, elapse))
- src_im = utility.draw_e2e_res(points, strs, image_file)
- img_name_pure = os.path.split(image_file)[-1]
- img_path = os.path.join(draw_img_save,
- "e2e_res_{}".format(img_name_pure))
- cv2.imwrite(img_path, src_im)
- logger.info("The visualized image saved in {}".format(img_path))
- if count > 1:
- logger.info("Avg Time: {}".format(total_time / (count - 1)))
|