123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487 |
- # copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- from __future__ import absolute_import
- from __future__ import division
- from __future__ import print_function
- import numpy as np
- import paddle
- from paddle import ParamAttr
- import paddle.nn as nn
- import paddle.nn.functional as F
- from paddle.nn.functional import hardswish, hardsigmoid
- from paddle.nn import Conv2D, BatchNorm, Linear, Dropout
- from paddle.nn import AdaptiveAvgPool2D, MaxPool2D, AvgPool2D
- from paddle.regularizer import L2Decay
- import math
- from paddle.utils.cpp_extension import load
- # jit compile custom op
- custom_ops = load(
- name="custom_jit_ops",
- sources=["./custom_op/custom_relu_op.cc", "./custom_op/custom_relu_op.cu"])
- def make_divisible(v, divisor=8, min_value=None):
- if min_value is None:
- min_value = divisor
- new_v = max(min_value, int(v + divisor / 2) // divisor * divisor)
- if new_v < 0.9 * v:
- new_v += divisor
- return new_v
- class MobileNetV3(nn.Layer):
- def __init__(self,
- scale=1.0,
- model_name="small",
- dropout_prob=0.2,
- class_dim=1000,
- use_custom_relu=False):
- super(MobileNetV3, self).__init__()
- self.use_custom_relu = use_custom_relu
- inplanes = 16
- if model_name == "large":
- self.cfg = [
- # k, exp, c, se, nl, s,
- [3, 16, 16, False, "relu", 1],
- [3, 64, 24, False, "relu", 2],
- [3, 72, 24, False, "relu", 1],
- [5, 72, 40, True, "relu", 2],
- [5, 120, 40, True, "relu", 1],
- [5, 120, 40, True, "relu", 1],
- [3, 240, 80, False, "hardswish", 2],
- [3, 200, 80, False, "hardswish", 1],
- [3, 184, 80, False, "hardswish", 1],
- [3, 184, 80, False, "hardswish", 1],
- [3, 480, 112, True, "hardswish", 1],
- [3, 672, 112, True, "hardswish", 1],
- [5, 672, 160, True, "hardswish", 2],
- [5, 960, 160, True, "hardswish", 1],
- [5, 960, 160, True, "hardswish", 1],
- ]
- self.cls_ch_squeeze = 960
- self.cls_ch_expand = 1280
- elif model_name == "small":
- self.cfg = [
- # k, exp, c, se, nl, s,
- [3, 16, 16, True, "relu", 2],
- [3, 72, 24, False, "relu", 2],
- [3, 88, 24, False, "relu", 1],
- [5, 96, 40, True, "hardswish", 2],
- [5, 240, 40, True, "hardswish", 1],
- [5, 240, 40, True, "hardswish", 1],
- [5, 120, 48, True, "hardswish", 1],
- [5, 144, 48, True, "hardswish", 1],
- [5, 288, 96, True, "hardswish", 2],
- [5, 576, 96, True, "hardswish", 1],
- [5, 576, 96, True, "hardswish", 1],
- ]
- self.cls_ch_squeeze = 576
- self.cls_ch_expand = 1280
- else:
- raise NotImplementedError(
- "mode[{}_model] is not implemented!".format(model_name))
- self.conv1 = ConvBNLayer(
- in_c=3,
- out_c=make_divisible(inplanes * scale),
- filter_size=3,
- stride=2,
- padding=1,
- num_groups=1,
- if_act=True,
- act="hardswish",
- name="conv1",
- use_custom_relu=self.use_custom_relu)
- self.block_list = []
- i = 0
- inplanes = make_divisible(inplanes * scale)
- for (k, exp, c, se, nl, s) in self.cfg:
- block = self.add_sublayer(
- "conv" + str(i + 2),
- ResidualUnit(
- in_c=inplanes,
- mid_c=make_divisible(scale * exp),
- out_c=make_divisible(scale * c),
- filter_size=k,
- stride=s,
- use_se=se,
- act=nl,
- name="conv" + str(i + 2),
- use_custom_relu=self.use_custom_relu))
- self.block_list.append(block)
- inplanes = make_divisible(scale * c)
- i += 1
- self.last_second_conv = ConvBNLayer(
- in_c=inplanes,
- out_c=make_divisible(scale * self.cls_ch_squeeze),
- filter_size=1,
- stride=1,
- padding=0,
- num_groups=1,
- if_act=True,
- act="hardswish",
- name="conv_last",
- use_custom_relu=self.use_custom_relu)
- self.pool = AdaptiveAvgPool2D(1)
- self.last_conv = Conv2D(
- in_channels=make_divisible(scale * self.cls_ch_squeeze),
- out_channels=self.cls_ch_expand,
- kernel_size=1,
- stride=1,
- padding=0,
- weight_attr=ParamAttr(),
- bias_attr=False)
- self.dropout = Dropout(p=dropout_prob, mode="downscale_in_infer")
- self.out = Linear(
- self.cls_ch_expand,
- class_dim,
- weight_attr=ParamAttr(),
- bias_attr=ParamAttr())
- def forward(self, inputs, label=None):
- x = self.conv1(inputs)
- for block in self.block_list:
- x = block(x)
- x = self.last_second_conv(x)
- x = self.pool(x)
- x = self.last_conv(x)
- x = hardswish(x)
- x = self.dropout(x)
- x = paddle.flatten(x, start_axis=1, stop_axis=-1)
- x = self.out(x)
- return x
- class ConvBNLayer(nn.Layer):
- def __init__(self,
- in_c,
- out_c,
- filter_size,
- stride,
- padding,
- num_groups=1,
- if_act=True,
- act=None,
- use_cudnn=True,
- name="",
- use_custom_relu=False):
- super(ConvBNLayer, self).__init__()
- self.if_act = if_act
- self.act = act
- self.conv = Conv2D(
- in_channels=in_c,
- out_channels=out_c,
- kernel_size=filter_size,
- stride=stride,
- padding=padding,
- groups=num_groups,
- weight_attr=ParamAttr(),
- bias_attr=False)
- self.bn = BatchNorm(
- num_channels=out_c,
- act=None,
- param_attr=ParamAttr(regularizer=L2Decay(0.0)),
- bias_attr=ParamAttr(regularizer=L2Decay(0.0)))
- # moving_mean_name=name + "_bn_mean",
- # moving_variance_name=name + "_bn_variance")
- self.use_custom_relu = use_custom_relu
- def forward(self, x):
- x = self.conv(x)
- x = self.bn(x)
- if self.if_act:
- if self.act == "relu":
- if self.use_custom_relu:
- x = custom_ops.custom_relu(x)
- else:
- x = F.relu(x)
- elif self.act == "hardswish":
- x = hardswish(x)
- else:
- print("The activation function is selected incorrectly.")
- exit()
- return x
- class ResidualUnit(nn.Layer):
- def __init__(self,
- in_c,
- mid_c,
- out_c,
- filter_size,
- stride,
- use_se,
- act=None,
- name='',
- use_custom_relu=False):
- super(ResidualUnit, self).__init__()
- self.if_shortcut = stride == 1 and in_c == out_c
- self.if_se = use_se
- self.use_custom_relu = use_custom_relu
- self.expand_conv = ConvBNLayer(
- in_c=in_c,
- out_c=mid_c,
- filter_size=1,
- stride=1,
- padding=0,
- if_act=True,
- act=act,
- name=name + "_expand",
- use_custom_relu=self.use_custom_relu)
- self.bottleneck_conv = ConvBNLayer(
- in_c=mid_c,
- out_c=mid_c,
- filter_size=filter_size,
- stride=stride,
- padding=int((filter_size - 1) // 2),
- num_groups=mid_c,
- if_act=True,
- act=act,
- name=name + "_depthwise",
- use_custom_relu=self.use_custom_relu)
- if self.if_se:
- self.mid_se = SEModule(mid_c, name=name + "_se")
- self.linear_conv = ConvBNLayer(
- in_c=mid_c,
- out_c=out_c,
- filter_size=1,
- stride=1,
- padding=0,
- if_act=False,
- act=None,
- name=name + "_linear",
- use_custom_relu=self.use_custom_relu)
- def forward(self, inputs):
- x = self.expand_conv(inputs)
- x = self.bottleneck_conv(x)
- if self.if_se:
- x = self.mid_se(x)
- x = self.linear_conv(x)
- if self.if_shortcut:
- x = paddle.add(inputs, x)
- return x
- class SEModule(nn.Layer):
- def __init__(self, channel, reduction=4, name=""):
- super(SEModule, self).__init__()
- self.avg_pool = AdaptiveAvgPool2D(1)
- self.conv1 = Conv2D(
- in_channels=channel,
- out_channels=channel // reduction,
- kernel_size=1,
- stride=1,
- padding=0,
- weight_attr=ParamAttr(),
- bias_attr=ParamAttr())
- self.conv2 = Conv2D(
- in_channels=channel // reduction,
- out_channels=channel,
- kernel_size=1,
- stride=1,
- padding=0,
- weight_attr=ParamAttr(),
- bias_attr=ParamAttr())
- def forward(self, inputs):
- outputs = self.avg_pool(inputs)
- outputs = self.conv1(outputs)
- outputs = F.relu(outputs)
- outputs = self.conv2(outputs)
- outputs = hardsigmoid(outputs, slope=0.2, offset=0.5)
- return paddle.multiply(x=inputs, y=outputs)
- def MobileNetV3_small_x0_35(**args):
- model = MobileNetV3(model_name="small", scale=0.35, **args)
- return model
- def MobileNetV3_small_x0_5(**args):
- model = MobileNetV3(model_name="small", scale=0.5, **args)
- return model
- def MobileNetV3_small_x0_75(**args):
- model = MobileNetV3(model_name="small", scale=0.75, **args)
- return model
- def MobileNetV3_small_x1_0(**args):
- model = MobileNetV3(model_name="small", scale=1.0, **args)
- return model
- def MobileNetV3_small_x1_25(**args):
- model = MobileNetV3(model_name="small", scale=1.25, **args)
- return model
- def MobileNetV3_large_x0_35(**args):
- model = MobileNetV3(model_name="large", scale=0.35, **args)
- return model
- def MobileNetV3_large_x0_5(**args):
- model = MobileNetV3(model_name="large", scale=0.5, **args)
- return model
- def MobileNetV3_large_x0_75(**args):
- model = MobileNetV3(model_name="large", scale=0.75, **args)
- return model
- def MobileNetV3_large_x1_0(**args):
- model = MobileNetV3(model_name="large", scale=1.0, **args)
- return model
- def MobileNetV3_large_x1_25(**args):
- model = MobileNetV3(model_name="large", scale=1.25, **args)
- return
- class DistillMV3(nn.Layer):
- def __init__(self,
- scale=1.0,
- model_name="small",
- dropout_prob=0.2,
- class_dim=1000,
- args=None,
- use_custom_relu=False):
- super(DistillMV3, self).__init__()
- self.student = MobileNetV3(
- model_name=model_name,
- scale=scale,
- class_dim=class_dim,
- use_custom_relu=use_custom_relu)
- self.student1 = MobileNetV3(
- model_name=model_name,
- scale=scale,
- class_dim=class_dim,
- use_custom_relu=use_custom_relu)
- def forward(self, inputs, label=None):
- predicts = dict()
- predicts['student'] = self.student(inputs, label)
- predicts['student1'] = self.student1(inputs, label)
- return predicts
- def distillmv3_large_x0_5(**args):
- model = DistillMV3(model_name="large", scale=0.5, **args)
- return model
- class SiameseMV3(nn.Layer):
- def __init__(self,
- scale=1.0,
- model_name="small",
- dropout_prob=0.2,
- class_dim=1000,
- args=None,
- use_custom_relu=False):
- super(SiameseMV3, self).__init__()
- self.net = MobileNetV3(
- model_name=model_name,
- scale=scale,
- class_dim=class_dim,
- use_custom_relu=use_custom_relu)
- self.net1 = MobileNetV3(
- model_name=model_name,
- scale=scale,
- class_dim=class_dim,
- use_custom_relu=use_custom_relu)
- def forward(self, inputs, label=None):
- # net
- x = self.net.conv1(inputs)
- for block in self.net.block_list:
- x = block(x)
- # net1
- x1 = self.net1.conv1(inputs)
- for block in self.net1.block_list:
- x1 = block(x1)
- # add
- x = x + x1
- x = self.net.last_second_conv(x)
- x = self.net.pool(x)
- x = self.net.last_conv(x)
- x = hardswish(x)
- x = self.net.dropout(x)
- x = paddle.flatten(x, start_axis=1, stop_axis=-1)
- x = self.net.out(x)
- return x
- def siamese_mv3(class_dim, use_custom_relu):
- model = SiameseMV3(
- scale=0.5,
- model_name="large",
- class_dim=class_dim,
- use_custom_relu=use_custom_relu)
- return model
- def build_model(config):
- model_type = config['model_type']
- if model_type == "cls":
- class_dim = config['MODEL']['class_dim']
- use_custom_relu = config['MODEL']['use_custom_relu']
- if 'siamese' in config['MODEL'] and config['MODEL']['siamese'] is True:
- model = siamese_mv3(
- class_dim=class_dim, use_custom_relu=use_custom_relu)
- else:
- model = MobileNetV3_large_x0_5(
- class_dim=class_dim, use_custom_relu=use_custom_relu)
- elif model_type == "cls_distill":
- class_dim = config['MODEL']['class_dim']
- use_custom_relu = config['MODEL']['use_custom_relu']
- model = distillmv3_large_x0_5(
- class_dim=class_dim, use_custom_relu=use_custom_relu)
- elif model_type == "cls_distill_multiopt":
- class_dim = config['MODEL']['class_dim']
- use_custom_relu = config['MODEL']['use_custom_relu']
- model = distillmv3_large_x0_5(
- class_dim=100, use_custom_relu=use_custom_relu)
- else:
- raise ValueError("model_type should be one of ['']")
- return model
|